Dynamic Energy Budget; Larval dispersal; Mytilus edulis; Offshore blue mussel; Remote sensing; Self-regulated cultivation; Blue mussel Mytilus edulis; Blue mussels; Condition; Dynamic energy budgets; Offshores; Remote-sensing; Aquatic Science
Abstract :
[en] Several reasons, from stakeholder conflicts to water quality issues, are pushing bivalve cultivation to less accessible, exposed, and offshore waters. Because sheltered areas are absent along the Belgian coastline, the possibility to culture mussels with self-regulated systems in exposed conditions has been explored by various research projects. Farmers consider offshore environments unsuitable on the assumption that spat densities are low, and growth is insufficient for commercialization. This study evaluates the potential for self-regulated mussel cultivation in an exposed North Sea environment based on data collected from several research projects that evaluated the biological and technical feasibility of commercial longline cultivation in Belgium. The cultivation methods were variable, but always relied on wild spat that was grown to market size. No husbandry practices such as seed harvesting, thinning, grading, or socking were performed. This cultivation technique, also called self-regulating cultivation, reduces operational costs when extreme weather and exposed conditions limit handling. A 3D hydro-dynamic larvae dispersal model (LDM) was used to simulate the spatial variability in arrivals and the timing of the arrival peak. In addition, a locally validated metabolic model (DEB) for the blue mussel (M. edulis) was forced with 10 year optimized remote sensing observations (Copernicus, Sentinel-3/OLCI) to predict industry-relevant information such as site suitability, inter-annual growth variability, and cultivation time. This study concludes that exposed mussel cultivation near the Belgian east coast is characterised by fast growth. Mussels grown in this area will reach a marketable size (6 cm) after 12–15 months of cultivation, which is just in time for the peak consumption season (July-August). Moving offshore prolongs the cultivation cycles to 17–25 months, but provides more stable growth conditions with less inter-annual variability. When considering a cultivation period of 12 months, the mussels originating from offshore cultivation are comparable in size to the smaller Dutch “Smitse” and French "Bouchots".
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Stechele, Brecht; Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
van der Zande, Dimitry; Royal Institute of Natural Sciences, OD Nature, Brussels, Belgium
Alvera Azcarate, Aida ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Delbare, Daan; Animal Science Unit, Research Group Aquaculture, Institute for Agricultural and Fisheries Research (ILVO), Ostend, Belgium
Lacroix, Geneviève; Royal Institute of Natural Sciences, OD Nature, Brussels, Belgium
Nevejan, Nancy; Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
Language :
English
Title :
Biological site suitability for exposed self-regulating cultivation of blue mussel (Mytilus edulis): A Belgian case study
This work was supported by the Research Foundation - Flanders (FWO) (grant number: 1S84619N, 2020). The larval transport model has been adapted for blue mussels in the frame of the UNDINE (INSITE Foundation Phase I, 2015–2017) project. The remote sensing data was generated in the framework of the Multi-Sync project, funded by the Belgian Federal Science Policy Office (SR/00/359, 2017). Mussel data were made available from the ‘Studie naar de commercialisering van de Belgische off-shore hangmosselcultuur’ (FIOV), Edulis (EFMZV 16/UP2/05/Aqua 2017), Value@Sea (EFMZV 16/UP2/04/Aqua 2017) and Coastbusters (VLAIO HBC 2016.0637 2017) co-funded research projects by the European Fund for Maritime Affairs and Fisheries and the Flemish Government.This work was supported by the Research Foundation - Flanders (FWO) (grant number: 1S84619N, 2020 ). The larval transport model has been adapted for blue mussels in the frame of the UNDINE ( INSITE Foundation Phase I , 2015–2017 ) project. The remote sensing data was generated in the framework of the Multi-Sync project, funded by the Belgian Federal Science Policy Office ( SR/00/359, 2017 ). Mussel data were made available from the ‘Studie naar de commercialisering van de Belgische off-shore hangmosselcultuur’ (FIOV), Edulis (EFMZV 16/UP2/05/Aqua 2017), Value@Sea (EFMZV 16/UP2/04/Aqua 2017) and Coastbusters (VLAIO HBC 2016.0637 2017) co-funded research projects by the European Fund for Maritime Affairs and Fisheries and the Flemish Government .The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Brecht Stechele reports financial support was provided by Research Foundation Flanders.
Alunno-Bruscia, M., Bourget, E., Fréchette, M., Shell allometry and length-mass-density relationship for Mytilus edulis in an experimental food-regulated situation. Mar. Ecol. Prog. Ser. 219 (2001), 177–188.
Alvera-Azcárate, A., Barth, A., Rixen, M., Beckers, J.M., Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Model. 9:4 (2005), 325–346.
Alvera-Azcárate, A., Barth, A., Parard, G., Beckers, J.M., Analysis of SMOS sea surface salinity data using DINEOF. Remote Sens. Environ. 180 (2016), 137–145.
Avdelas, L., Avdic-Mravlje, E., Borges Marques, A.C., Cano, S., Capelle, J.J., Carvalho, N., Cozzolin, M., Dennis, J., Ellis, T., Polanco, J.M.F., Guillen, J., Lasner, T., Le Bihan, V., Llorente, I., Mol, A., Nicheva, S., Nielsen, R., van Oostenbrugge, H., Villasante, S., Asche, F., The decline of mussel aquaculture in the European Union: causes, economic impacts and opportunities. Rev. Aquac. 13:1 (2021), 91–118.
Barillé, L., Le Bris, A., Goulletquer, P., Thomas, Y., Glize, P., Kane, F., Falconer, L., Gouillotreau, P., Trouillet, B., Palmer, S., Gernez, P., Biological, socio-economic, and administrative opportunities and challenges to moving aquaculture offshore for small French oyster-farming companies. Aquaculture, 521, 2020, 735045.
Belpaeme, K., Konings, P., Vanhooren, S., 2011. De kustatlas Vlaanderen België 2, coördinatiepunt duurzaam kustbeheer. Technical report, VLIZ.
Bertolini, C., Brigolin, D., Porporato, E., Hattab, J., Pastres, R., Tiscar, P.G., Testing a Model of Pacific Oysters’(Crassostrea gigas) Growth in the Adriatic Sea: Implications for Aquaculture Spatial Planning. Sustainability, 13(6), 2021, 3309.
Bouxin, H., 1954. Observations sur le frai de Mytilus edulis var. galloprovincialis (Lmk). Dates précises de frai. Facteurs provoquant l′émission des produits génitaux. - ICES Special Scientific Meeting “Oyster and Mussel Culture” N°36.
Brigolin, D., Porporato, E.M.D., Prioli, G., Pastres, R., Making space for shellfish farming along the Adriatic coast. ICES J. Mar. Sci. 74:6 (2017), 1540–1551.
Britannica, The Editors of Encyclopaedia Britannica, T.E., 2019. Mussel. 〈https://www.britannica.com/animal/mussel〉 (Accessed: 2020–10-12).
Buck, B.H., Farming in a High Energy Environment: Potentials and Constraints of Sustainable Offshore Aquaculture in the German Bight (North Sea). 2004, University of Bremen, Germany.
Buck, B.H., Experimental trials on the feasibility of offshore seed production of the mussel Mytilus edulis in the German Bight: installation, technical requirements and environmental conditions. Helgol. Mar. Res. 61:2 (2007), 87–101.
Buck, B.H., Nevejan, N., Wille, M., Chambers, M.D., Chopin, T., Offshore and multi-use aquaculture with extractive species: seaweeds and bivalves. Aquaculture Perspective of Multi-use Sites in the Open Ocean, 2017, Springer, Cham, 23–69.
van den Burg, S., Kamermans, P., Blanch, M., Pletsas, D., Poelman, M., Soma, K., Dalton, G., Business case for mussel aquaculture in offshore wind farms in the North Sea. Mar. Policy 85 (2017), 1–7.
Chipperfield, P.N.J., Observations on the breeding and settlement of Mytilus edulis L in British waters. J. Mar. Biol. Assoc. UK 32 (1953), 449–476.
Cloern, J.E., Grenz, C., Vidergar-Lucas, L., An empirical model of the phytoplankton chlorophyll: carbon ratio-the conversion factor between productivity and growth rate. Limnol. Oceanogr. 40:7 (1995), 1313–1321.
De Vooys, C. G. N, Numbers of larvae and primary plantigrades of the mussel Mytilus edulis in the western Dutch Wadden Sea. J. Sea Res. 41 (1999), 189–201.
Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D., Tett, P., Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuar., Coast. Shelf Sci. 79:3 (2008), 429–439.
Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., Wimmer, W., The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens. Environ. 116 (2012), 140–158.
EC, 2009. Communication from the Commission to the European Parliament and the Council, Building a sustainable future for aquaculture, A new impetus for the Strategy for the Sustainable Development of European Aquaculture—COM/2009/0162.
Ewaldsen, P., 2003. Erzeugerorganisation schleswig-holsteinischer Muschelzüchter e.V. (Head of the Organisation of Shellfish Producer in S.-H.). Protocol of the 1st session of the expert meeting dealing with fisheries, offshore wind farms and open ocean aquaculture. Emmelsbüll-Horsbüll (Germany), 19 March 2003.
Fettweis, M.P., Nechad, B., Evaluation of in situ and remote sensing sampling methods for SPM concentrations, Belgian continental shelf (southern North Sea). Ocean Dyn. 61:2–3 (2011), 157–171.
Fréchette, M., Wilson, J.R., Bilodeau, F., Lachance-Bernard, M., Production dynamics, self-thinning and profitability of blue mussel populations reared in suspension culture in Cascapédia Bay. Aquac. Can. 2010 Cold Harvest., 2010, 2011, 30.
Gohin, F., Druon, J.N., Lampert, L., A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 23:8 (2002), 1639–1661.
Gons, H.J., Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 33:7 (1999), 1127–1132.
Honkoop, P.J.C., Van der Meer, J., Experimentally induced effects of water temperature and immersion time on reproductive output of bivalves in the Wadden Sea. J. Exp. Mar. Biol. Ecol. 220:2 (1998), 227–246.
Huret, M., Runge, J.A., Chen, C., Cowles, G., Xu, Q., Pringle, J.M., Dispersal modeling of fish early life stages: sensitivity with application to Atlantic cod in the western Gulf of Maine. Mar. Ecol. Prog. Ser. 347 (2007), 261–274.
Jansen, H.M., Van Den Burg, S., Bolman, B., Jak, R.G., Kamermans, P., Poelman, M., Stuiver, M., The feasibility of offshore aquaculture and its potential for multi-use in the North Sea. Aquac. Int. 24:3 (2016), 735–756.
Jia, G., Belli, M., Sansone, U., Rosamilia, S., Blasi, M., 210Pb and 210Po concentrations in the Venice lagoon ecosystem (Italy) and the potential radiological impact to the local public and environment. J. Radioanal. Nucl. Chem. 256:3 (2003), 513–528.
Kiørboe, T., Møhlenberg, F., Nøhr, O., Effect of suspended bottom material on growth and energetics in Mytilus edulis. Mar. Biol. 61:4 (1981), 283–288.
Kooijman, S.A.L.M., Pseudo-faeces production in bivalves. J. Sea Res. 56:2 (2006), 103–106.
Kooijman, S.A.L.M., Dynamic Energy Budget Theory for Metabolic Organisation. 2010, Cambridge University Press.
Kooijman, S.A.L.M., Metabolic acceleration in animal ontogeny: an evolutionary perspective. J. Sea Res. 94 (2014), 128–137.
Kvile, K.Ø., Romagnoni, G., Dagestad, K.-F., Langangen, Ø., Kristiansen, T. Sensitivity of modelled North Sea cod larvae transport to vertical behaviour, ocean model resolution and interannual variation in ocean dynamics. – ICES Journal of Marine Science, 75, pp. 2413–2424.
Lachance-Bernard, M., Daigle, G., Himmelman, J.H., Fréchette, M., Biomass–density relationships and self-thinning of blue mussels (Mytilus spp.) reared on self-regulated longlines. Aquaculture 308:1–2 (2010), 34–43.
Lacroix, G., Maes, G.E., Bolle, L.J., Volckaert, F.A., ). Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea solea L.). J. Sea Res. 84 (2013), 13–25.
Laing, I., Spencer, B.E., Bivalve cultivation: criteria for selecting a site. Science series technical report-centre for environment fisheries and aquaculture. Science, 2006, 136.
Larsen, P.S., Riisgård, H.U., Growth-prediction model for blue mussels (Mytilus edulis) on future optimally thinned farm-ropes in Great Belt (Denmark). J. Mar. Sci. Eng., 4(3), 2016, 42.
Lavigne, H., Van der Zande, D., Ruddick, K., Dos Santos, J.C., Gohin, F., Brotas, V., Kratzer, S., Quality-control tests for OC4, OC5 and NIR-red satellite chlorophyll-a algorithms applied to coastal waters. Remote Sens. Environ., 2021, 10.1016/j.rse.2020.112237 (112237).
Lescrauwaet, A.C., Pirlet, H., Verleye, T., Mees, J., Herman, R., 2013. Compendium voor Kust en Zee 2013: een geïntegreerd kennisdocument over de socio-economische, ecologische en institutionele aspecten van de kust en zee in Vlaanderen en België (p. 342). Vlaams Instituut voor de Zee (VLIZ).
Lika, K., Kearney, M.R., Freitas, V., van der Veer, H.W., van der Meer, J., Wijsman, J.W., Pecquerie, L., Kooijman, S.A., The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. J. Sea Res. 66:4 (2011), 270–277.
Lika, K., Kearney, M.R., Kooijman, S.A., The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model II: Properties and preliminary patterns. J. Sea Res. 66:4 (2011), 278–288.
Loewe, P., Becker, G., Brockmann, U., Frohse, A., Herklotz, K., Klein, H., Schulz, A., 2003. Nordsee und Deutsche Bucht 2002: Ozeanographischer Zustandsbericht. Bundesamt für Seeschifffahrt und Hydrographie.
Luyten, P.J., Jones, J.E., Proctor, R., Tabor, A., Tett, P., Wild-Allen, K., COHERENS–A coupled hydrodynamical-ecological model for regional and shelf seas: user documentation. MUMM Report. Manag. Unit. Math. Models North Sea, 1999, 914.
Marques, G.M., Augustine, S., Lika, K., Pecquerie, L., Domingos, T., Kooijman, S.A., The AmP project: comparing species on the basis of dynamic energy budget parameters. PLoS Comput. Biol., 14(5), 2018, e1006100.
McQuaid, C.D., Lindsay, J.R., Lindsay, T.L., Interactive effects of wave exposure and tidal height on population structure of the mussel Perna perna. Mar. Biol. 137:5 (2000), 925–932.
Moor, G.D., Strandgids het Vlaamse strand: geomorfologie en dynamiek. Vlaams Instituut voor de Zee. 2006, Vlaams Instituut voor de Zee: Oostende.
Nechad, B., Ruddick, K.G., Park, Y., Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114:4 (2010), 854–866.
Newell, R.I., 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (north and mid-atlantic): blue mussel (No. 4). The Center.
O'Reilly, J.E., Maritorena, S., Mitchell, B.G., Siegel, D.A., Carder, K.L., Garver, S.A., Kahru, M., McClain, C., Ocean color chlorophyll algorithms for SeaWiFS. J. Geophysiol. Res. 103:C11 (1998), 24937–24953.
Picoche, C., Le Gendre, R., Flye-Sainte-Marie, J., Françoise, S., Maheux, F., Simon, B., Gangnery, A., Towards the determination of Mytilus edulis food preferences using the dynamic energy budget (DEB) theory. PLoS One, 9(10), 2014, e109796.
Porporato, E., Pastres, R., Brigolin, D., Site suitability for finfish marine aquaculture in the central Mediterranean Sea. Front. Mar. Sci., 6, 2020, 772.
Pouvreau, S., Bourles, Y., Lefebvre, S., Gangnery, A., Alunno-Bruscia, M., Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J. Sea Res. 56:2 (2006), 156–167.
Ramaraj, R., Tsai, D.D., Chen, P.H., Chlorophyll is not accurate measurement for algal biomass. Chiang Mai J. Sci. 40:4 (2013), 547–555.
Riisgård, H.U., Larsen, P.S., Pleissner, D., Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index. Helgol. Mar. Res. 68:1 (2014), 193–198.
Rodhouse, P.G., Roden, C.M., Burnell, G.M., Hensey, M.P., McMahon, T., Ottway, B., Ryan, T.H., Food resource, gametogenesis and growth of Mytilus edulis on the shore and in suspended culture: Killary Harbour, Ireland. J. Mar. Biol. Assoc. U.K. 64:3 (1984), 513–529.
Rosa, M., Ward, J.E., Shumway, S.E., Selective capture and ingestion of particles by suspension-feeding bivalve molluscs: a review. J. Shellfish Res. 37:4 (2018), 727–746.
Rosland, R., Strand, Ø., Alunno-Bruscia, M., Bacher, C., Strohmeier, T., Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions. J. Sea Res. 62:2–3 (2009), 49–61.
Ruddick, K., Lacroix, G., Rousseau, V., Lancelot, Ch, Cox, D., (eds.) Hydrodynamics and meteorology of the Belgian Coastal Zone. Current Status of Eutrophication in the Belgian Coastal Zone, 2006, Presses Universitaires de Bruxelles, Belgium, 1–15.
Saraiva, S., Kooijman, B., 2017. Amp Mytilus edulis. Version 2017/11/11.
Saraiva, S., Van der Meer, J., Kooijman, S.A.L.M., Sousa, T., DEB parameters estimation for Mytilus edulis. J. Sea Res. 66:4 (2011), 289–296.
Saraiva, S., Van Der Meer, J., Kooijman, S.A.L.M., Sousa, T., Modelling feeding processes in bivalves: a mechanistic approach. Ecol. Model. 222:3 (2011), 514–523.
Savina, M., Lacroix, G., Ruddick, K., Modelling the transport of common sole larvae in the southern North Sea: influence of hydrodynamics and larval vertical movements. J. Mar. Syst. 81:1–2 (2010), 86–98.
Seed, R., Factors influencing shell shape in the mussel Mytilus edulis. J. Mar. Biol. Assoc. U.K. 48:3 (1968), 561–584.
Sheil, S., Strategic guidelines for aquaculture in the EU/ EPRS briefing. 130639REVI, 2013, 6.
Stavrakidis-Zachou, O., Papandroulakis, N., Lika, K., A DEB model for European sea bass (Dicentrarchus labrax): Parameterisation and application in aquaculture. J. Sea Res. 143 (2019), 262–271.
Thomas, Y., Maurizé, J., Pouvreau, S., Bacher, C., Gohin, F., Struski, C., Le Mao, P., Modelling the growth of Mytilus edulis (L.) by coupling a dynamic energy budget model with satellite-derived environmental data. Rapp. d′avancement de. contrat N., 8, 2006, 05.
Thomas, Y., Mazurié, J., Alunno-Bruscia, M., Bacher, C., Bouget, J.F., Gohin, F., Pouvreau, S., Struski, C., Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data. J. Sea Res. 66:4 (2011), 308–317.
van der Veer, H.W., Cardoso, J.F., van der Meer, J., The estimation of DEB parameters for various Northeast Atlantic bivalve species. J. Sea Res. 56:2 (2006), 107–124.
Van der Zande, D., Lavigne, H., Blauw, A., Prins, T., Desmit, X., Eleveld, M., Gohin, F., Pardo, S., Tilstone, G., Cardoso Dos Santos, J., 2019. Enhance coherence in eutrophication assessments based on chlorophyll, using satellite dataas part of the EU project ‘Joint monitoring programme of the eutrophication of the North Sea with satellite data’ (Ref: DG ENV/MSFD Second Cycle/2016). Activity 2 Report. 106 pp.
Van Haren, R.J.F., Kooijman, S.A.L.M., ). Application of a dynamic energy budget model to Mytilus edulis (L.). Neth. J. Sea Res. 31:2 (1993), 119–133.
Van Lancker, V., Du Four, I., Verfaillie, E., Deleu, S., Schelfaut, K., Fettweis, M., Van den Eynde, D., Franken, F., Monbaliu, J., Guardino, A., Portilla, J., Lanckneus, J., Moerkerke, G., Degraer, S., 2007. Management, research and budgetting of aggregates in shelf seas related to end-users (Marebasse).
Van Lancker, V., Deronde, B., De Vos, K., Fettweis, M., Houthuys, R., Martens, C., Mathys, M., Borremans, M., (eds.) Kust en zee, 2015, Geologie van Vlaanderen, 340–408.
van Leeuwen, S., Tett, P., Mills, D., van der Molen, J., Stratified and nonstratified areas in the N orth S ea: long-term variability and biological and policy implications. J. Geophys. Res.: Oceans 120:7 (2015), 4670–4686.
Velasco, L.A., Navarro, J.M., Energetic balance of infaunal (Mulinia edulis King, 1831) and epifaunal (Mytilus chilensis Hupé, 1854) bivalves in response to wide variations in concentration and quality of seston. J. Exp. Mar. Biol. Ecol. 296:1 (2003), 79–92.
Verfaillie, E., Van Lancker, V., Van Meirvenne, M., Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas. Cont. Shelf Res. 26:19 (2006), 2454–2468.
Visser, A.W., Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Prog. Ser. 158 (1997), 275–281.
Wilson, J.H., Seed, R., Reproduction in Mytilus edulis L. (Mollusca:Bivalvia) in Carlingford Lough, Northern Ireland. Ir. Fish. Invest. Ser. B (Mar.) 15 (1974), 3–75.