Fatty Acids; Transcription Factors; Animals; Autophagy/genetics; Endothelial Cells/metabolism; Fatty Acids/metabolism; Lipid Droplets/metabolism; Mice; Mitochondria; Transcription Factors/metabolism; Lymphangiogenesis/genetics; Lymphatic Vessels/metabolism; Autophagy; Endothelial Cells; Lipid Droplets; Lymphangiogenesis; Lymphatic Vessels; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Multidisciplinary; Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry
Abstract :
[en] Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.
Disciplines :
Oncology
Author, co-author :
Meçe, Odeta; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Houbaert, Diede ; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Sassano, Maria-Livia ; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Durré, Tania; Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
Maes, Hannelore ; Université de Liège - ULiège ; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
Schaaf, Marco; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
More, Sanket; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Ganne, Maarten; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
García-Caballero, Melissa; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium ; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
Borri, Mila; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium ; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
Verhoeven, Jelle; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Agrawal, Madhur; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium
Jacobs, Kathryn ; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium ; Laboratory for Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium ; Laboratory for Tumor Microenvironment and Therapeutic Resistance VIB Center for Cancer Biology, VIB, Leuven, Belgium
Bergers, Gabriele; Laboratory for Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium ; Laboratory for Tumor Microenvironment and Therapeutic Resistance VIB Center for Cancer Biology, VIB, Leuven, Belgium
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Ghesquière, Bart ; Metabolomics Expertise Center, Department of Oncology, KU Leuven, Leuven, Belgium
Dewerchin, Mieke ; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium ; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
Swinnen, Johan V ; Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
Vinckier, Stefan; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium ; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
Soengas, María S ; Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
Carmeliet, Peter ; Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium ; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
Agostinis, Patrizia ; Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium. patrizia.agostinis@kuleuven.be ; VIB Center for Cancer Biology Research, 3000, Leuven, Belgium. patrizia.agostinis@kuleuven.be
We thank K. Rillaerts, J. Souffreau, and A. Bouché, for expert technical support and Dr. A. Luttun and Dr. A. Zijsen for sharing tools and advices. P.A. is supported by grants from the Flemish Research Foundation (FWO-Vlaanderen; G076617N, G049817N, G070115N), the EOS MetaNiche consortium N° 40007532, Stichting tegen Kanker (FAF-F/2018/1252) and the iBOF/21/053 ATLANTIS consortium with G.B. D.H. is the recipient of an FWO Doctoral Fellowship from the Flemish Research Foundation (FWO-Vlaanderen, 1186019N), Belgium. M.B. is supported by the ‘Fonds voor Wetenschappelijk Onderzoek’ (FWO). K.J. is the recipient of an FWO Postdoctoral Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). P.C. is supported by Methusalem funding by the Flemish government, and by an ERC Advanced Research Grant (EU-ERC269073).
Alitalo, K. The lymphatic vasculature in disease. Nat. Med. 17, 1371–1380 (2011). DOI: 10.1038/nm.2545
Stacker, S. A. et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat. Rev. Cancer 14, 159–172 (2014). DOI: 10.1038/nrc3677
François, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456 643–647 (2008). DOI: 10.1038/nature07391
Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010). DOI: 10.1101/gad.1859310
Srinivasan, R. S. et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 28, 2175–2187 (2014). DOI: 10.1101/gad.216226.113
Vaahtomeri, K., Karaman, S., Mäkinen, T. & Alitalo, K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev. 31, 1615–1634 (2017). DOI: 10.1101/gad.303776.117
Johnson, N. C. et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282–3291 (2008). DOI: 10.1101/gad.1727208
Ducoli, L. & Detmar, M. Beyond PROX1: Transcriptional, epigenetic, and noncoding RNA regulation of lymphatic identity and function. Dev. Cell. 56, 406–426 (2021). DOI: 10.1016/j.devcel.2021.01.018
Schaaf, M. B., Houbaert, D., Meçe, O. & Agostinis, P. Autophagy in endothelial cells and tumor angiogenesis. Cell Death Differ. 26, 665–679 (2019). DOI: 10.1038/s41418-019-0287-8
Nussenzweig, S. C., Verma, S. & Finkel, T. The role of autophagy in vascular biology. Circ. Res. 116, 480–488 (2015). DOI: 10.1161/CIRCRESAHA.116.303805
Abdrakhmanov, A., Gogvadze, V. & Zhivotovsky, B. To eat or to die: Deciphering selective forms of autophagy. Trends Biochem. Sci. 45, 347–364 (2020). DOI: 10.1016/j.tibs.2019.11.006
Jarc, E. & Petan, T. Lipid droplets and the management of cellular stress. Yale J. Biol. Med. 92, 435–452 (2019).
Du Toit, A., Hofmeyr, J.-H. S., Gniadek, T. J. & Loos, B. Measuring autophagosome flux. Autophagy 14, 1060–1071 (2018).
Nowak-Sliwinska, P. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21, 425–532 (2018). DOI: 10.1007/s10456-018-9613-x
Cao, R. et al. Mouse corneal lymphangiogenesis model. Nat. Protoc. 6, 817–826 (2011). DOI: 10.1038/nprot.2011.359
Blacher, S., Detry, B., Bruyère, F., Foidart, J. M. & Noël, A. Additional parameters for the morphometry of angiogenesis and lymphangiogenesis in corneal flat mounts. Exp. Eye Res. 89, 274–276 (2009). DOI: 10.1016/j.exer.2009.02.021
Maes, H. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell. 26, 190–206 (2014). DOI: 10.1016/j.ccr.2014.06.025
Birgisdottir, Å. B. & Johansen, T. Autophagy and endocytosis—interconnections and interdependencies. J. Cell Sci. 133, jcs228114 (2020).
Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002). DOI: 10.1093/emboj/21.7.1505
Lin, F.-J. et al. Direct transcriptional regulation of neuropilin-2 by COUP-TFII modulates multiple steps in murine lymphatic vessel development. J. Clin. Invest. 120, 1694–1707 (2010). DOI: 10.1172/JCI40101
Wong, B. W. et al. The role of fatty acid Î2-oxidation in lymphangiogenesis. Nature 542, 49 (2016). DOI: 10.1038/nature21028
Maes, H., Rubio, N., Garg, A. D. & Agostinis, P. Autophagy: Shaping the tumor microenvironment and therapeutic response. Trends Mol. Med. 19, 428–446 (2013). DOI: 10.1016/j.molmed.2013.04.005
Ma, W. et al. Mitochondrial respiration controls the Prox1-Vegfr3 feedback loop during lymphatic endothelial cell fate specification and maintenance. Sci. Adv. 7, eabe7359 (2021).
Nakashima, B. J. & Hong, Y.-K. VE-Cadherin: A critical sticking point for lymphatic system maintenance: Role of VE-Cadherin in lymphatic maintenance. Circ. Res. 130, 24–26 (2022). DOI: 10.1161/CIRCRESAHA.121.320497
Birsner, A. E., Benny, O. & D’Amato, R. J. The corneal micropocket assay: A model of angiogenesis in the mouse eye. JoVE (J. Vis. Exp.) https://doi.org/10.3791/51375 (2014).
Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004). DOI: 10.1172/JCI20465
Kubo, H. et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc. Natl Acad. Sci. USA 99, 8868–8873 (2002). DOI: 10.1073/pnas.062040199
Esteban-Martínez, L. et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. EMBO J. 36, 1688–1706 (2017). DOI: 10.15252/embj.201695916
Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020). DOI: 10.1038/s41586-020-2623-z
Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019). DOI: 10.1038/s41580-018-0085-z
Schott, M. B. et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218, 3320–3335 (2019). DOI: 10.1083/jcb.201803153
Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13, 655–667 (2011). DOI: 10.1016/j.cmet.2011.03.023
Bowden, K. L. et al. Lysosomal acid lipase deficiency impairs regulation of ABCA1 gene and formation of high density lipoproteins in cholesteryl ester storage disease. J. Biol. Chem. 286, 30624–30635 (2011). DOI: 10.1074/jbc.M111.274381
Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009). DOI: 10.1038/nature07976
Thumser, A. E. & Storch, J. Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol. Cell Biochem. 299, 67–73 (2007). DOI: 10.1007/s11010-005-9041-2
Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell. 42, 9–21.e5 (2017). DOI: 10.1016/j.devcel.2017.06.003
Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell. 32, 678–692 (2015). DOI: 10.1016/j.devcel.2015.01.029
Pernas, L., Bean, C., Boothroyd, J. C. & Scorrano, L. Mitochondria restrict growth of the intracellular parasite toxoplasma gondii by limiting its uptake of fatty acids. Cell Metab. 27, 886–897.e4 (2018). DOI: 10.1016/j.cmet.2018.02.018
Yu, S. B. & Pekkurnaz, G. Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922–3941 (2018). DOI: 10.1016/j.jmb.2018.07.027
Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020). DOI: 10.1038/s41580-020-0210-7
Diebold, L. P. et al. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1, 158–171 (2019). DOI: 10.1038/s42255-018-0011-x
Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018). DOI: 10.1016/j.cmet.2018.07.016
Siragusa, M. et al. Nitric oxide maintains endothelial redox homeostasis through PKM2 inhibition. EMBO J. 38, e100938 (2019). DOI: 10.15252/embj.2018100938
McDonnell, E. et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 17, 1463–1472 (2016). DOI: 10.1016/j.celrep.2016.10.012
Arduini, A. & Zammit, V. Acetate transport into mitochondria does not require a carnitine shuttle mechanism. Magn. Reson. Med. 77, 11 (2017). DOI: 10.1002/mrm.26492
Wong, B. W. et al. The role of fatty acid β-oxidation in lymphangiogenesis. Nature 542, 49–54 (2017). DOI: 10.1038/nature21028
Smirnova, E., Griparic, L., Shurland, D. L. & van der Bliek, A. M. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell. 12, 2245–2256 (2001). DOI: 10.1091/mbc.12.8.2245
Minami, S. et al. Lipophagy maintains energy homeostasis in the kidney proximal tubule during prolonged starvation. Autophagy 13, 1629–1647 (2017). DOI: 10.1080/15548627.2017.1341464
Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e6 (2018). DOI: 10.1016/j.cmet.2018.03.003
Henry, R. A., Kuo, Y.-M. & Andrews, A. J. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52, 5746–5759 (2013). DOI: 10.1021/bi400684q
Xu, L. et al. Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochim. Biophys. Acta 1832, 1605–1612 (2013). DOI: 10.1016/j.bbadis.2013.05.003
Galluzzi, L., Pietrocola, F., Levine, B. & Kroemer, G. Metabolic control of autophagy. Cell 159, 1263–1276 (2014). DOI: 10.1016/j.cell.2014.11.006
García-Caballero, M. et al. Role and therapeutic potential of dietary ketone bodies in lymph vessel growth. Nat. Metab. 1, 666–675 (2019). DOI: 10.1038/s42255-019-0087-y
Saito, T. et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat. Commun. 10, 1567 (2019). DOI: 10.1038/s41467-019-08829-3
Seth, A. et al. Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases biliary cell commitment. Development 141, 538–547 (2014). DOI: 10.1242/dev.099481
Korff, T., Krauss, T. & Augustin, H. G. Three-dimensional spheroidal culture of cytotrophoblast cells mimics the phenotype and differentiation of cytotrophoblasts from normal and preeclamptic pregnancies. Exp. Cell Res. 297, 415–423 (2004).
Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015). DOI: 10.1038/nature14362
Bazigou, E. et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J. Clin. Invest. 121, 2984–2992 (2011). DOI: 10.1172/JCI58050
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004). DOI: 10.1038/nature03029
Detry, B. et al. Sunitinib inhibits inflammatory corneal lymphangiogenesis. Invest. Ophthalmol. Vis. Sci. 54, 3082–3093 (2013). DOI: 10.1167/iovs.12-10856
Marien, E. et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int. J. Cancer 137, 1539–1548 (2015). DOI: 10.1002/ijc.29517