[en] (1) Background: This work aims to investigate the metabolomic changes in PIGinH11 pigs and investigate differential compounds as potential therapeutic targets for metabolic diseases. (2) Methods: PIGinH11 pigs were established with a CRISPR/Cas9 system. PNPLA3I148M, hIAPP, and GIPRdn were knocked in the H11 locus of the pig genome. The differential metabolites between and within groups were compared at baseline and two months after high-fat-high-sucrose diet induction. (3) Results: 72.02% of the 815 detected metabolites were affected by the transgenic effect. Significantly increased metabolites included isoleucine, tyrosine, methionine, oxoglutaric acid, acylcarnitine, glucose, sphinganines, ceramides, and phosphatidylserines, while fatty acids and conjugates, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins were decreased. Lower expression of GPAT3 and higher expression of PNPLA3I148M decreased the synthesis of diacylglycerol and phosphatidylcholines. Accumulated ceramides that block Akt signaling and decrease hyocholic acid and lysophosphatidylcholines might be the main reason for increased blood glucose in PIGinH11 pigs, which was consistent with metabolomic changes in patients. (4) Conclusions: Through serum metabolomics and lipidomics studies, significant changes in obesity and diabetes-related biomarkers were detected in PIGinH11 pigs. Excessive fatty acids β-oxidation interfered with glucose and amino acids catabolism and reduced phosphatidylcholines. Decreased hyocholic acid, lysophosphatidylcholine, and increased ceramides exacerbated insulin resistance and elevated blood glucose. Phosphatidylserines were also increased, which might promote chronic inflammation by activating macrophages.
Xu, Jianping ✱; The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
Zhang, Kaiyi ✱; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Qiu, Bintao; The Ministry of Health Key Laboratory of Endocrinology, Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
Liu, Jieying; The Ministry of Health Key Laboratory of Endocrinology, Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
Liu, Xiaoyu; The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
Yang, Shulin; State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Xiao, Xinhua; The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
✱ These authors have contributed equally to this work.
Language :
English
Title :
Decreased Hyocholic Acid and Lysophosphatidylcholine Induce Elevated Blood Glucose in a Transgenic Porcine Model of Metabolic Disease.
NSCF - National Natural Science Foundation of China
Funding text :
This research was funded by the National Natural Science Foundation of China, grant number 32070535 and 81770832; the National Key R&D Program of China, grant number 2021YFA0805903; the State Key Laboratory of Animal Nutrition, grant number 2004DA125184F1913; and the Agricultural Science and Technology Innovation Program, grant number ASTIP-IAS05 and ASTIP-IAS-TS-4.
Alsoud L.O. Soares N.C. Al-Hroub H.M. Mousa M. Kasabri V. Bulatova N. Suyagh M. Alzoubi K.H. El-Huneidi W. Abu-Irmaileh B. et al. Identification of Insulin Resistance Biomarkers in Metabolic Syndrome Detected by UHPLC-ESI-QTOF-MS Metabolites 2022 12 508 10.3390/metabo12060508 35736441
Yang Q. Vijayakumar A. Kahn B.B. Metabolites as regulators of insulin sensitivity and metabolism Nat. Rev. Mol. Cell Biol. 2018 19 654 672 10.1038/s41580-018-0044-8 30104701
Yang S.L. Xia J.H. Zhang Y.Y. Fan J.G. Wang H. Yuan J. Zhao Z.Z. Pan Q. Mu Y.L. Xin L.L. et al. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs Sci. Rep. 2015 5 13980 10.1038/srep13980 26358367
Umeyama K. Watanabe M. Saito H. Kurome M. Tohi S. Matsunari H. Miki K. Nagashima H. Dominant-negative mutant hepatocyte nuclear factor 1alpha induces diabetes in transgenic-cloned pigs Transgenic Res. 2009 18 697 706 10.1007/s11248-009-9262-3 19357985
Renner S. Fehlings C. Herbach N. Hofmann A. von Waldthausen D.C. Kessler B. Ulrichs K. Chodnevskaja I. Moskalenko V. Amselgruber W. et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function Diabetes 2010 59 1228 1238 10.2337/db09-0519
Renner S. Braun-Reichhart C. Blutke A. Herbach N. Emrich D. Streckel E. Wünsch A. Kessler B. Kurome M. Bähr A. et al. Permanent neonatal diabetes in INS(C94Y) transgenic pigs Diabetes 2013 62 1505 1511 10.2337/db12-1065
Zhang K. Tao C. Xu J. Ruan J. Xia J. Zhu W. Xin L. Ye H. Xie N. Xia B. et al. CD8+ T Cells Involved in Metabolic Inflammation in Visceral Adipose Tissue and Liver of Transgenic Pigs Front. Immunol. 2021 12 690069 10.3389/fimmu.2021.690069
Ramzan I. Ardavani A. Vanweert F. Mellett A. Atherton P.J. Idris I. The Association between Circulating Branched Chain Amino Acids and the Temporal Risk of Developing Type 2 Diabetes Mellitus: A Systematic Review & Meta-Analysis Nutrients 2022 14 4411 10.3390/nu14204411
Sun Y. Gao H.Y. Fan Z.Y. He Y. Yan Y.X. Metabolomics Signatures in Type 2 Diabetes: A Systematic Review and Integrative Analysis J. Clin. Endocrinol. Metab. 2020 105 dgz240 10.1210/clinem/dgz240
Dambrova M. Makrecka-Kuka M. Kuka J. Vilskersts R. Nordberg D. Attwood M.M. Smesny S. Sen Z.D. Guo A.C. Oler E. et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials Pharmacol. Rev. 2022 74 506 551 10.1124/pharmrev.121.000408
Sobczak A.I.S. Blindauer C.A. Stewart A.J. Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes Nutrients 2019 11 2022 10.3390/nu11092022
Nie C. He T. Zhang W. Zhang G. Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism Int. J. Mol. Sci. 2018 19 954 10.3390/ijms19040954
Zhao H. Zhang F. Sun D. Wang X. Zhang X. Zhang J. Yan F. Huang C. Xie H. Lin C. et al. Branched-Chain Amino Acids Exacerbate Obesity-Related Hepatic Glucose and Lipid Metabolic Disorders via Attenuating Akt2 Signaling Diabetes 2020 69 1164 1177 10.2337/db19-0920
Apontes P. Liu Z. Su K. Benard O. Youn D.Y. Li X. Li W. Mirza R.H. Bastie C.C. Jelicks L.A. et al. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets Diabetes 2014 63 3626 3636 10.2337/db14-0006
Kitada M. Ogura Y. Monno I. Koya D. The impact of dietary protein intake on longevity and metabolic health EBioMedicine 2019 43 632 640 10.1016/j.ebiom.2019.04.005
Horvath S.E. Daum G. Lipids of mitochondria Prog. Lipid Res. 2013 52 590 614 10.1016/j.plipres.2013.07.002
Frigerio G. Favero C. Savino D. Mercadante R. Albetti B. Dioni L. Vigna L. Bollati V. Pesatori A.C. Fustinoni S. Plasma Metabolomic Profiling in 1391 Subjects with Overweight and Obesity from the SPHERE Study Metabolites 2021 11 194 10.3390/metabo11040194
Tulipani S. Palau-Rodriguez M. Alonso A.M. Cardona F. Marco-Ramell A. Zonja B. de Alda M.L. Muñoz-Garach A. Sanchez-Pla A. Tinahones F.J. et al. Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes Clin. Chim. Acta 2016 463 53 61 10.1016/j.cca.2016.10.005
Wang-Sattler R. Yu Z. Herder C. Messias A.C. Floegel A. He Y. Heim K. Campillos M. Holzapfel C. Thorand B. et al. Novel biomarkers for pre-diabetes identified by metabolomics Mol. Syst. Biol. 2012 8 615 10.1038/msb.2012.43
Fikri A.M. Smyth R. Kumar V. Al-Abadla Z. Abusnana S. Munday M.R. Pre-diagnostic biomarkers of type 2 diabetes identified in the UAE’s obese national population using targeted metabolomics Sci. Rep. 2020 10 17616 10.1038/s41598-020-73384-7
Long J. Yang Z. Wang L. Han Y. Peng C. Yan C. Yan D. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: A systematic review and meta-analysis BMC Endocr. Disord. 2020 20 174 10.1186/s12902-020-00653-x 33228610
Renner S. Römisch-Margl W. Prehn C. Krebs S. Adamski J. Göke B. Blum H. Suhre K. Roscher A.A. Wolf E. Changing metabolic signatures of amino acids and lipids during the prediabetic period in a pig model with impaired incretin function and reduced β-cell mass Diabetes 2012 61 2166 2175 10.2337/db11-1133 22492530
Zhou Y. Orešič M. Leivonen M. Gopalacharyulu P. Hyysalo J. Arola J. Verrijken A. Francque S. Van Gaal L. Hyötyläinen T. et al. Noninvasive Detection of Nonalcoholic Steatohepatitis Using Clinical Markers and Circulating Levels of Lipids and Metabolites Clin. Gastroenterol. Hepatol. 2016 14 1463 1472.e6 10.1016/j.cgh.2016.05.046 27317851
Luukkonen P.K. Nick A. Hölttä-Vuori M. Thiele C. Isokuortti E. Lallukka-Brück S. Zhou Y. Hakkarainen A. Lundbom N. Peltonen M. et al. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids JCI Insight 2019 4 e127902 10.1172/jci.insight.127902 31434800
Matsuzaka T. Kuba M. Koyasu S. Yamamoto Y. Motomura K. Arulmozhiraja S. Ohno H. Sharma R. Shimura T. Okajima Y. et al. Hepatocyte ELOVL Fatty Acid Elongase 6 Determines Ceramide Acyl-Chain Length and Hepatic Insulin Sensitivity in Mice Hepatology 2020 71 1609 1625 10.1002/hep.30953
Chaurasia B. Tippetts T.S. Mayoral Monibas R. Liu J. Li Y. Wang L. Wilkerson J.L. Sweeney C.R. Pereira R.F. Sumida D.H. et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis Science 2019 365 386 392 10.1126/science.aav3722
Barber M.N. Risis S. Yang C. Meikle P.J. Staples M. Febbraio M.A. Bruce C.R. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes PLoS ONE 2012 7 e41456 10.1371/journal.pone.0041456
Tan S.T. Ramesh T. Toh X.R. Nguyen L.N. Emerging roles of lysophospholipids in health and disease Prog Lipid Res 2020 80 101068 10.1016/j.plipres.2020.101068
Yea K. Kim J. Yoon J.H. Kwon T. Kim J.H. Lee B.D. Lee H.J. Lee S.J. Kim J.I. Lee T.G. et al. Lysophosphatidylcholine activates adipocyte glucose uptake and lowers blood glucose levels in murine models of diabetes J. Biol. Chem. 2009 284 33833 33840 10.1074/jbc.M109.024869
Overton H.A. Fyfe M.C. Reynet C. GPR119, a novel G protein-coupled receptor target for the treatment of type 2 diabetes and obesity Br. J. Pharmacol. 2008 153 (Suppl. S1) S76 S81 10.1038/sj.bjp.0707529
Soga T. Ohishi T. Matsui T. Saito T. Matsumoto M. Takasaki J. Matsumoto S. Kamohara M. Hiyama H. Yoshida S. et al. Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor Biochem. Biophys. Res. Commun. 2005 326 744 751 10.1016/j.bbrc.2004.11.120
Overton H.A. Babbs A.J. Doel S.M. Fyfe M.C. Gardner L.S. Griffin G. Jackson H.C. Procter M.J. Rasamison C.M. Tang-Christensen M. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents Cell Metab. 2006 3 167 175 10.1016/j.cmet.2006.02.004
Drzazga A. Okulus M. Rychlicka M. Biegala L. Gliszczynska A. Gendaszewska-Darmach E. Lysophosphatidylcholine Containing Anisic Acid Is Able to Stimulate Insulin Secretion Targeting G Protein Coupled Receptors Nutrients 2020 12 1173 10.3390/nu12041173
Birge R.B. Boeltz S. Kumar S. Carlson J. Wanderley J. Calianese D. Barcinski M. Brekken R.A. Huang X. Hutchins J.T. et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer Cell Death Differ. 2016 23 962 978 10.1038/cdd.2016.11
Grace S.L. Barry-Bianchi S. Stewart D.E. Rukholm E. Nolan R.P. Physical activity behavior, motivational readiness and self-efficacy among Ontarians with cardiovascular disease and diabetes J. Behav. Med. 2007 30 21 29 10.1007/s10865-006-9080-5
Jové M. Tibau J. Serrano J.C. Berdún R. Rodríguez-Palmero M. Font-I-Furnols M. Cassanyé A. Rodriguez-Mortera R. Sol J. Rassendren H. et al. Molecular phenomics of a high-calorie diet-induced porcine model of prepubertal obesity J. Nutr. Biochem. 2020 83 108393 10.1016/j.jnutbio.2020.108393
Zheng X. Chen T. Zhao A. Ning Z. Kuang J. Wang S. You Y. Bao Y. Ma X. Yu H. et al. Hyocholic acid species as novel biomarkers for metabolic disorders Nat. Commun. 2021 12 1487 10.1038/s41467-021-21744-w
Jia W. Rajani C. Zheng X. Jia W. Hyocholic acid and glycemic regulation: Comments on ‘Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism’ J. Mol. Cell Biol. 2021 13 460 462 10.1093/jmcb/mjab027
Zheng X. Chen T. Jiang R. Zhao A. Wu Q. Kuang J. Sun D. Ren Z. Li M. Zhao M. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism Cell Metab. 2021 33 791 803.e7 10.1016/j.cmet.2020.11.017
Albaugh V.L. Banan B. Antoun J. Xiong Y. Guo Y. Ping J. Alikhan M. Clements B.A. Abumrad N.N. Flynn C.R. Role of Bile Acids and GLP-1 in Mediating the Metabolic Improvements of Bariatric Surgery Gastroenterology 2019 156 1041 1051.e4 10.1053/j.gastro.2018.11.017
Yan X. Li P. Tang Z. Feng B. The relationship between bile acid concentration, glucagon-like-peptide 1, fibroblast growth factor 15 and bile acid receptors in rats during progression of glucose intolerance BMC Endocr. Disord. 2017 17 60 10.1186/s12902-017-0211-5 28946907
Chen Z.Z. Gerszten R.E. Metabolomics and Proteomics in Type 2 Diabetes Circ. Res. 2020 126 1613 1627 10.1161/CIRCRESAHA.120.315898 32437301
Bar N. Korem T. Weissbrod O. Zeevi D. Rothschild D. Leviatan S. Kosower N. Lotan-Pompan M. Weinberger A. Le Roy C.I. et al. A reference map of potential determinants for the human serum metabolome Nature 2020 588 135 140 10.1038/s41586-020-2896-2 33177712
Gonzalez-Covarrubias V. Martínez-Martínez E. Del Bosque-Plata L. The Potential of Metabolomics in Biomedical Applications Metabolites 2022 12 194 10.3390/metabo12020194