Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages
Hieu, D.Q.; Hang, B.T.B.; Huong, D.T.T.et al.
2021 • In Fish Physiology and Biochemistry, 47 (6), p. 1995 - 2013
Hieu, D.Q.; Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, Namur, B-5000, Belgium
Hang, B.T.B.; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
Huong, D.T.T.; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
Kertaoui, N.E.; Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, Namur, B-5000, Belgium
Farnir, Frédéric ; Université de Liège - ULiège > Département de gestion vétérinaire des Ressources Animales (DRA)
Phuong, N.T.; College of Aquaculture and Fisheries, Cantho University, Campus II, Cantho City, Viet Nam
Kestemont, P.; Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environment (ILEE), University of Namur (UNamur), Rue de Bruxelles 61, Namur, B-5000, Belgium
Language :
English
Title :
Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages
Publication date :
2021
Journal title :
Fish Physiology and Biochemistry
ISSN :
0920-1742
eISSN :
1573-5168
Publisher :
Springer Science and Business Media B.V.
Volume :
47
Issue :
6
Pages :
1995 - 2013
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
The research was supported by the Académie de Recherche et d’Enseignement Supérieur (ARES) and the General Directorate and Development for Cooperation (DGD) in Belgium.
Ágústsson T, Sundell K, Sakamoto T et al (2003) Pituitary gene expression of somatolactin, prolactin, and growth hormone during Atlantic salmon parr–smolt transformation. Aquaculture 222:229–238. 10.1016/S0044-8486(03)00124-8 DOI: 10.1016/S0044-8486(03)00124-8
Alderdice DF (1988) 3 Osmotic and ionic regulation in teleost eggs and larvae. Fish Physiol 11:163–251. 10.1016/S1546-5098(08)60200-9 DOI: 10.1016/S1546-5098(08)60200-9
Altinokand I, Grizzle JM (2001) Effects of brackish water on growth, feed conversion and energy absorption efficiency by juvenile euryhaline and freshwater stenohaline fishes. J Fish Biol 59:1142–1152. 10.1111/j.1095-8649.2001.tb00181.x DOI: 10.1111/j.1095-8649.2001.tb00181.x
Arnesen AM, Toften H, Agustsson T et al (2003) Osmoregulation, feed intake, growth and growth hormone levels in 0+ Atlantic salmon (Salmo salar L.) transferred to seawater at different stages of smolt development. Aquaculture 222:167–187. 10.1016/S0044-8486(03)00109-1 DOI: 10.1016/S0044-8486(03)00109-1
Barman UK, Jana SN, Garg SK et al (2005) Effect of inland water salinity on growth, feed conversion efficiency and intestinal enzyme activity in growing grey mullet, Mugil cephalus (Linn.): field and laboratory studies. Aquac Int 13:241–256. 10.1007/s10499-004-2479-5 DOI: 10.1007/s10499-004-2479-5
Beraldo P, Pinosa M, Tibaldi E, Canavese B (2003) Abnormalities of the operculum in gilthead sea bream (Sparus aurata): morphological description. Aquaculture 220:89–99. 10.1016/S0044-8486(02)00416-7 DOI: 10.1016/S0044-8486(02)00416-7
Berillis P (2015) Factors that can lead to the development of skeletal deformities in fishes: a review. J Fish Sci 9:17–23
Bessey OA, Lowry OH, Brock MJ (1946) A method for the rapid determination of alkaline phosphates with five cubic millimeters of serum. J Biol Chem 164:321–329 DOI: 10.1016/S0021-9258(18)43072-4
Van BD, Kantoush S, Sumi T (2020) Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 353:107011. 10.1016/j.geomorph.2019.107011 DOI: 10.1016/j.geomorph.2019.107011
Bœuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol Part C Toxicol Pharmacol 130:411–423. 10.1016/S1532-0456(01)00268-X DOI: 10.1016/S1532-0456(01)00268-X
Boglione C, Gagliardi F, Scardi M, Cataudella S (2001) Skeletal descriptors and quality assessment in larvae and post-larvae of wild-caught and hatchery-reared gilthead sea bream (Sparus aurata L. 1758). Aquaculture 192:1–22. 10.1016/S0044-8486(00)00446-4 DOI: 10.1016/S0044-8486(00)00446-4
Bolasina S, Tagawa M, Yamashita Y, Tanaka M (2006) Effect of stocking density on growth, digestive enzyme activity and cortisol level in larvae and juveniles of Japanese flounder, Paralichthys olivaceus. Aquaculture 259:432–443. 10.1016/j.aquaculture.2006.05.021 DOI: 10.1016/j.aquaculture.2006.05.021
Borode A, Balogun A, Omoyeni B (2002) Effect of salinity on embryonic development, hatchability, and growth of African Catfish, Clarias gariepinus, eggs and larvae. J Appl Aquac 12:89–93. 10.1300/J028v12n04_08 DOI: 10.1300/J028v12n04_08
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. 10.1006/abio.1976.9999 DOI: 10.1006/abio.1976.9999
Caberoy NB, Quinitio GF (2000) Changes in Na+, K+-ATPase activity and gill chloride cell morphology in the grouper Epinephelus coioides larvae and juveniles in response to salinity and temperature. Fish Physiol Biochem 23:83–94. 10.1023/A:1007827331137 DOI: 10.1023/A:1007827331137
Change, IC (2014) Synthesis report summary chapter for policymakers. IPCC: Geneva, Switzerland, 31.
Cook MA, Guthrie KM, Rust MB, Plesha PD (2005) Effects of salinity and temperature during incubation on hatching and development of lingcod Ophiodon elongatus Girard, embryos. Aquac Res 36:1298–1303. 10.1111/j.1365-2109.2005.01346.x DOI: 10.1111/j.1365-2109.2005.01346.x
Coughlan DJ, Gloss SP (1984) Early morphological development of gills in smallmouth bass (Micropterus dolomieui). Can J Zool 62:951–958. 10.1139/z84-134 DOI: 10.1139/z84-134
Cuesta A, Laiz-Carrion R, Del Rio MPM et al (2005) Salinity influences the humoral immune parameters of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 18:255–261. 10.1016/j.fsi.2004.07.009 DOI: 10.1016/j.fsi.2004.07.009
Cuvier-Péres A, Kestemont P (2001) Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiol Biochem 24:279–285. 10.1023/A:1015033300526 DOI: 10.1023/A:1015033300526
Davenport J, Lønning S, Kjørsvik E (1981) Osmotic and structural changes during early development of eggs and larvae of the cod, Gadus morhua L. J Fish Biol 19:317–331. 10.1111/j.1095-8649.1981.tb05835.x DOI: 10.1111/j.1095-8649.1981.tb05835.x
Dou S, Masuda R, Tanaka M, Tsukamoto K (2003) Identification of factors affecting the growth and survival of the settling Japanese flounder larvae, Paralichthys olivaceus. Aquaculture 218:309–327. 10.1016/S0044-8486(02)00531-8 DOI: 10.1016/S0044-8486(02)00531-8
Drennon K, Moriyama S, Kawauchi H et al (2003) Development of an enzyme-linked immunosorbent assay for the measurement of plasma growth hormone (GH) levels in channel catfish (Ictalurus punctatus): assessment of environmental salinity and GH secretogogues on plasma GH levels. Gen Comp Endocrinol 133:314–322. 10.1016/S0016-6480(03)00194-1 DOI: 10.1016/S0016-6480(03)00194-1
Eckert SM, Yada T, Shepherd BS et al (2001) Hormonal control of osmoregulation in the channel catfish Ictalurus punctatus. Gen Comp Endocrinol 122:270–286. 10.1006/GCEN.2001.7633 DOI: 10.1006/GCEN.2001.7633
El Kertaoui N, Lund I, Assogba H et al (2019) Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Sci Rep 9:7074. 10.1038/s41598-019-43491-1 DOI: 10.1038/s41598-019-43491-1
FAO (2020) GLOBEFISH Highlights January 2020 ISSUE, with Jan. – Sep. 2019 Statistics – a quarterly update on world seafood markets. Globefish Highlights no. 1–2020. Rome
Fashina Bombata HA, Busari AN (2003) Influence of salinity on the developmental stages of African catfish Heterobranchus longifilis (Valenciennes, 1840). Aquaculture 224:213–222. 10.1016/S0044-8486(03)00273-4 DOI: 10.1016/S0044-8486(03)00273-4
Fridman S, Bron J, Rana K (2012a) Ontogenic changes in the osmoregulatory capacity of the Nile tilapia Oreochromis niloticus and implications for aquaculture. Aquaculture 356–357:243–249. 10.1016/j.aquaculture.2012.05.010 DOI: 10.1016/j.aquaculture.2012.05.010
Fridman S, Bron J, Rana K (2012b) Influence of salinity on embryogenesis, survival, growth and oxygen consumption in embryos and yolk-sac larvae of the Nile tilapia. Aquaculture 334–337:182–190. 10.1016/j.aquaculture.2011.12.034 DOI: 10.1016/j.aquaculture.2011.12.034
Fu C, Wilson JM, Rombough PJ, Brauner CJ (2010) Ions first: Na+ uptake shifts from the skin to the gills before O2 uptake in developing rainbow trout, Oncorhynchus mykiss. Proceedings Biol Sci 277:1553–1560. 10.1098/rspb.2009.1545 DOI: 10.1098/rspb.2009.1545
Fuentes J, Eddy FB (1997) Drinking in Atlantic salmon presmolts and smolts in response to growth hormone and salinity. Comp Biochem Physiol Part A Physiol 117:487–491. 10.1016/S0300-9629(96)00397-0 DOI: 10.1016/S0300-9629(96)00397-0
Gheisvandi N, Hajimoradloo A, Ghorbani R, Hoseinifar SH (2015) The effects of gradual or abrupt changes of salinity on digestive enzymes activity of Caspian kutum, Rutilus kutum (Kamensky, 1901) larvae. J Appl Ichthyol 3110.1111/jai.12891
Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274–278. 10.4103/0974-7788.76794 DOI: 10.4103/0974-7788.76794
Goswami SV, Parwez I, Sundararaj BI (1983) Some aspects of osmoregulation in a stenohaline freshwater catfish, Heteropneustes fossilis (Bloch), in different salinities. J Fish Biol 23:475–487. 10.1111/j.1095-8649.1983.tb02928.x DOI: 10.1111/j.1095-8649.1983.tb02928.x
Haddy JA, Pankhurst NW (2000) The effects of salinity on reproductive development, plasma steroid levels, fertilisation and egg survival in black bream Acanthopagrus butcheri. Aquaculture 188:115–131. 10.1016/S0044-8486(00)00326-4 DOI: 10.1016/S0044-8486(00)00326-4
Hamed SS, Jiddawi NS, Poj B (2016) Effect of salinity levels on growth, feed utilization, body composition and digestive enzymes activities of juvenile silver pompano Trachinotus blochii. Int Fish Aquat Stud 4:279–283
Harpaz S, Hakim Y, Slosman T, Eroldogan OT (2005) Effects of adding salt to the diet of Asian sea bass Lates calcarifer reared in fresh or salt water recirculating tanks, on growth and brush border enzyme activity. Aquaculture 248:315–324. 10.1016/J.AQUACULTURE.2005.03.007 DOI: 10.1016/J.AQUACULTURE.2005.03.007
Henne JP, Watanabe WO (2003) Effects of light intensity and salinity on growth, survival, and whole-body osmolality of larval southern flounder Paralichthys lethostigma. J World Aquac Soc 34:450–465. 10.1111/j.1749-7345.2003.tb00084.x DOI: 10.1111/j.1749-7345.2003.tb00084.x
Holm H, Hanssen LE, Krogdahl A, Florholmen J (1988) High and low inhibitor soybean meals affect human duodenal proteinase activity differently: in vivo comparison with bovine serum albumin. J Nutr 118:515–520. 10.1093/jn/118.4.515 DOI: 10.1093/jn/118.4.515
Huong D, Quyen N (2012) The effect of salinity on the embryonic development and osmoregulatory of the striped catfish (Pangasianodon hypophthalmus) larvae and fingerling stages. J Sci Tho Univ 29–37
Hwang PP (1990) Salinity effects on development of chloride cells in the larvae of ayu (Plecoglossus altivelis). Mar Biol 107:1–7. 10.1007/BF01313236 DOI: 10.1007/BF01313236
Ishihara A, Mugiya Y (1987) Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus. J Exp Zool 242:121–129. 10.1002/jez.1402420202 DOI: 10.1002/jez.1402420202
Islam A (2005) Embryonic and larval development of Thai Pangas (Pangasius sutchi Fowler, 1937). Dev Growth Differ 47:1–6. 10.1111/j.1440-169x.2004.00773.x DOI: 10.1111/j.1440-169x.2004.00773.x
Izquierdo MS, Scolamacchia M, Betancor M et al (2013) Effects of dietary DHA and alpha-tocopherol on bone development, early mineralisation and oxidative stress in Sparus aurata (Linnaeus, 1758) larvae. Br J Nutr 109:1796–1805. 10.1017/S0007114512003935 DOI: 10.1017/S0007114512003935
Katoh F, Shimizu A, Uchida K, Kaneko T (2000) Shift of chloride cell distribution during early life stages in seawater-adapted killifish, Fundulus heteroclitus. Zoolog Sci 17:11–18. 10.2108/zsj.17.11 DOI: 10.2108/zsj.17.11
Kim J-H, Park H-J, Kim K-W et al (2017) Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiol Biochem 43:1421–1431. 10.1007/s10695-017-0382-z DOI: 10.1007/s10695-017-0382-z
Koumoundouros G, Gagliardi F, Divanach P et al (1997) Normal and abnormal osteological development of caudal fin in Sparus aurata L. fry. Aquaculture 149:215–226. 10.1016/S0044-8486(96)01443-3 DOI: 10.1016/S0044-8486(96)01443-3
Kültz D (2015) Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol 218:1907–1914. 10.1242/jeb.118695 DOI: 10.1242/jeb.118695
Kumar A, Harikrishna V, Krishna Reddy A et al (2017) Salinity tolerance of Pangasianodon hypophthalmus in inland saline water: effect on growth, survival and haematological parameters. Eco Env Cons 23:475–482
Kvåle A, Mangor-Jensen A, Moren M et al (2007) Development and characterisation of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264:457–468. 10.1016/J.AQUACULTURE.2006.12.024 DOI: 10.1016/J.AQUACULTURE.2006.12.024
Lan TTP, Hien TTT, Le Cam TuT et al (2020) Salinization intensifies the effects of elevated temperatures on Channa striata, a common tropical freshwater aquaculture fish in the Mekong Delta. Vietnam Fish Sci 86:1029–1036. 10.1007/s12562-020-01463-9 DOI: 10.1007/s12562-020-01463-9
Li J, Eygensteyn J, Lock R et al (1995) Branchial chloride cells in larvae and juveniles of freshwater tilapia Oreochromis mossambicus. J Exp Biol 198:2177–2184 DOI: 10.1242/jeb.198.10.2177
Likongwe JS, Stecko TD, Stauffer JR, Carline RF (1996) Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture 146:37–46. 10.1016/S0044-8486(96)01360-9 DOI: 10.1016/S0044-8486(96)01360-9
Marc AM, Quentel C, Severe A et al (1995) Changes in some endocrinological and non-specific immunological parameters during seawater exposure in the brown trout. J Fish Biol 46:1065–1081. 10.1111/j.1095-8649.1995.tb01410.x DOI: 10.1111/j.1095-8649.1995.tb01410.x
Mardaneh Khatooni M, Mojazi Amiri B, Mirvaghefi A et al (2012) The effects of salinity on the fertilization rate and rearing of the Persian sturgeon (Acipenser persicus) larvae. Aquac Int 20:1097–1105. 10.1007/s10499-012-9560-2 DOI: 10.1007/s10499-012-9560-2
McCormick SD (1993) Methods for nonlethal gill biopsy and measurement of Na+, K+ and -ATPase activity. Can J Fish Aquat Sci 50:656–658 DOI: 10.1139/f93-075
Metais P, Bieth J (1968) Determination of alpha-amylase by a microtechnic. Ann Biol Clin (paris) 26:133–142
Milla S, Mathieu C, Wang N et al (2010) Spleen immune status is affected after acute handling stress but not regulated by cortisol in Eurasian perch, Perca fluviatilis. Fish Shellfish Immunol 28:931–941. 10.1016/j.fsi.2010.02.012 DOI: 10.1016/j.fsi.2010.02.012
Moutou K, Panagiota P, Mamuris Z (2004) Effects of salinity on digestive protease activity in the euryhaline sparid Sparus aurata L.: a preliminary study. Aquac Res - AQUAC RES 35:912–914. 10.1111/j.1365-2109.2004.01068.x DOI: 10.1111/j.1365-2109.2004.01068.x
Nguyen PTH, Do HTT, Mather PB, Hurwood DA (2014) Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus). Fish Physiol Biochem 40:1839–1848. 10.1007/s10695-014-9972-1 DOI: 10.1007/s10695-014-9972-1
Nicholson JA, Kim YS (1975) A one-step l-amino acid oxidase assay for intestinal peptide hydrolase activity. Anal Biochem 63:110–117. 10.1016/0003-2697(75)90194-3 DOI: 10.1016/0003-2697(75)90194-3
Okamoto T, Kurokawa T, Gen K et al (2009) Influence of salinity on morphological deformities in cultured larvae of Japanese eel, Anguilla japonica, at completion of yolk resorption. Aquaculture 293:113–118. 10.1016/j.aquaculture.2009.04.005 DOI: 10.1016/j.aquaculture.2009.04.005
Ostrowski AD, Watanabe WO, Montgomery FP et al (2011) Effects of salinity and temperature on the growth, survival, whole body osmolality, and expression of Na+/K+ ATPase mRNA in red porgy (Pagrus pagrus) larvae. Aquaculture 314:193–201. 10.1016/J.AQUACULTURE.2011.02.010 DOI: 10.1016/J.AQUACULTURE.2011.02.010
Ottesen OH, Bolla S (1998) Combined effects of temperature and salinity on development and survival of Atlantic halibut larvae. Aquac Int 6:103–120. 10.1023/A:1009234122861 DOI: 10.1023/A:1009234122861
Overton J, Bayley M, Paulsen H, Wang T (2008) Salinity tolerance of cultured Eurasian perch, Perca fluviatilis L.: effects on growth and on survival as a function of temperature. Aquaculture 277:282–286. 10.1016/j.aquaculture.2008.02.029 DOI: 10.1016/j.aquaculture.2008.02.029
Phuc NTH, Mather PB, Hurwood DA (2017) Effects of sublethal salinity and temperature levels and their interaction on growth performance and hematological and hormonal levels in tra catfish (Pangasianodon hypophthalmus). Aquac Int 25:1057–1071. 10.1007/s10499-016-0097-7 DOI: 10.1007/s10499-016-0097-7
Pujante IM, Moyano FJ, Martos-Sitcha JA et al (2018) Effect of different salinities on gene expression and activity of digestive enzymes in the thick-lipped grey mullet (Chelon labrosus). Fish Physiol Biochem 44:349–373. 10.1007/s10695-017-0440-6 DOI: 10.1007/s10695-017-0440-6
Qiang J, Wang H, Kpundeh MD et al (2013) Effect of water temperature, salinity, and their interaction on growth, plasma osmolality, and gill Na+, K+-ATPase activity in juvenile GIFT tilapia Oreochromis niloticus (L.). J Therm Biol 38:331–338. 10.1016/J.JTHERBIO.2013.04.002 DOI: 10.1016/J.JTHERBIO.2013.04.002
Riley LG, Richman NH 3rd, Hirano T, Gordon GE (2002) Activation of the growth hormone/insulin-like growth factor axis by treatment with 17 alpha-methyltestosterone and seawater rearing in the tilapia. Oreochromis Mossambicus Gen Comp Endocrinol 127:285–292. 10.1016/S0016-6480(02)00051-5 DOI: 10.1016/S0016-6480(02)00051-5
Ronkin D, Seroussi E, Nitzan T et al (2015) Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species. Comp Biochem Physiol Part D Genomics Proteomics 13:35–43. 10.1016/j.cbd.2015.01.003 DOI: 10.1016/j.cbd.2015.01.003
Sakai M, Kobayashi M, Kawauchi H (1995) Enhancement of chemiluminescent responses of phagocytic cells from rainbow trout, Oncorhynchus mykiss, by injection of growth hormone. Fish Shellfish Immunol 5:375–379. 10.1006/FSIM.1995.0035 DOI: 10.1006/FSIM.1995.0035
Schmitz M, Douxfils J, Mandiki SNM et al (2016) Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection. Fish Shellfish Immunol 55:550–558. 10.1016/j.fsi.2016.06.031 DOI: 10.1016/j.fsi.2016.06.031
Torrecillas S, Montero D, Caballero MJ et al (2015) Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish Shellfish Immunol 42:508–516. 10.1016/J.FSI.2014.11.033 DOI: 10.1016/J.FSI.2014.11.033
Tort L (2011) Stress and immune modulation in fish. Dev Comp Immunol 35:1366–1375. 10.1016/j.dci.2011.07.002 DOI: 10.1016/j.dci.2011.07.002
Traber PG, Gumucio DL, Wang W (1991) Isolation of intestinal epithelial cells for the study of differential gene expression along the crypt-villus axis. Am J Physiol - Gastrointest Liver Physiol 260:G895–G903. 10.1152/ajpgi.1991.260.6.G895 DOI: 10.1152/ajpgi.1991.260.6.G895
Tran-Ngoc KT, Schrama JW, Le MTT et al (2017) Salinity and diet composition affect digestibility and intestinal morphology in Nile tilapia (Oreochromis niloticus). Aquaculture 469:36–43. 10.1016/J.AQUACULTURE.2016.11.037 DOI: 10.1016/J.AQUACULTURE.2016.11.037
Tsuzuki MY, Sugai JK, Maciel JC et al (2007) Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture 271:319–325. 10.1016/J.AQUACULTURE.2007.05.002 DOI: 10.1016/J.AQUACULTURE.2007.05.002
Uni Z, Ganot S, Sklan D (1998) Posthatch development of mucosal function in the broiler small intestine. Poult Sci 77:75–82. 10.1093/ps/77.1.75 DOI: 10.1093/ps/77.1.75
Usher ML, Talbot C, Eddy FB (1990) Effects of transfer to seawater on digestion and gut function in Atlantic salmon smolts (Salmo salar L.). Aquaculture 90:85–96. 10.1016/0044-8486(90)90285-U DOI: 10.1016/0044-8486(90)90285-U
van der Heijden AJ, van der Meij JC, Flik G, Wendelaar Bonga SE (1999) Ultrastructure and distribution dynamics of chloride cells in tilapia larvae in fresh water and sea water. Cell Tissue Res 297:119–130. 10.1007/s004410051339 DOI: 10.1007/s004410051339
Vargas-Chacoff L, Saavedra E, Oyarzún R et al (2015) Effects on the metabolism, growth, digestive capacity and osmoregulation of juvenile of Sub-Antarctic Notothenioid fish Eleginops maclovinus acclimated at different salinities. Fish Physiol Biochem 41:1369–1381. 10.1007/s10695-015-0092-3 DOI: 10.1007/s10695-015-0092-3
Varsamos S, Nebel C, Charmantier G (2005) Ontogeny of osmoregulation in postembryonic fish: a review. Comp Biochem Physiol A Mol Integr Physiol 141:401–429. 10.1016/j.cbpb.2005.01.013 DOI: 10.1016/j.cbpb.2005.01.013
Woo NYS, Tong WCM (1982) Salinity adaptation in the snakehead, Ophiocephalus maculatus Lacépède: changes in oxygen consumption, branchial Na+-K+-ATPase and body composition. J Fish Biol 20:11–19. 10.1111/j.1095-8649.1982.tb03890.x DOI: 10.1111/j.1095-8649.1982.tb03890.x
Worthington TM (1982) Enzymes and related biochemicals. Biochemical Products Division. Worthington Diagnostic System Freehold, NJ
Yada T, Azuma T, Takagi Y (2001) Stimulation of non-specific immune functions in seawater-acclimated rainbow trout, Oncorhynchus mykiss, with reference to the role of growth hormone. Comp Biochem Physiol Part B Biochem Mol Biol 129:695–701. 10.1016/S1096-4959(01)00370-0 DOI: 10.1016/S1096-4959(01)00370-0
Yada T, Kaiya H, Mutoh K et al (2006) Ghrelin stimulates phagocytosis and superoxide production in fish leukocytes. J Endocrinol 189:57–65. 10.1677/joe.1.06187 DOI: 10.1677/joe.1.06187
Yada T, Muto K, Azuma T, Ikuta K (2004) Effects of prolactin and growth hormone on plasma levels of lysozyme and ceruloplasmin in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 139:57–63. 10.1016/j.cca.2004.09.003 DOI: 10.1016/j.cca.2004.09.003