[en] Magnetocapillary interactions between particles allow to self-assemble floating crystals along liquid interfaces. For a fixed number of particles, different states possessing different symmetrical features, known as metastable states, coexist. In this paper, we demonstrate how to trigger the transition from one state to another, either by rearranging the crystal, or by controlling its growth. First, we show that externally controlled magnetic fields can squeeze the entire crystal to induce structural modifications, that upon relaxation can lead to a modified state. Second, we propose localized laser-induced thermocapillary flows that can be used to guide new particles towards an existing crystal in a desired direction, thus favoring a particular resulting state. The control of the formation of metastable states is a key ingredient to functionalize such assemblies, paving the way to self-assembled microrobots.
Disciplines :
Physics
Author, co-author :
Collard, Ylona ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Piñan Basualdo, Franco N; TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelle, 1050, Brussels, Belgium. franco.pinan.basualdo@ulb.be ; FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France. franco.pinan.basualdo@ulb.be
Bolopion, Aude; FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France
Gauthier, Michaël; FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France
Lambert, Pierre; TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelle, 1050, Brussels, Belgium
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Controlled transitions between metastable states of 2D magnetocapillary crystals.
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Belgian Science Policy Office
Funding text :
This work is financially supported by the University of Liège through the CESAM Research Unit. F.P.B and Y.C. are financially supported by the Grant FNRS PDR T.0129.18. This work is supported by BELSPO (IAP 7/38 MicroMAST) and the EUR EIPHI program (ANR-17-EURE-0002).
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
McManus, J. J., Charbonneau, P., Zaccarelli, E. & Asherie, N. The physics of protein self-assembly. Curr. Opin. Colloid Interface Sci. 22, 73–79 (2016).
Mastrangeli, M. et al. Self-assembly from milli-to nanoscales: Methods and applications. J. Micromech. Microeng. 19, 083001 (2009).
Shi, S. & Russell, T. P. Nanoparticle assembly at liquid–liquid interfaces: From the nanoscale to mesoscale. Adv. Mater. 30, 1800714 (2018).
Hanaor, D. A. & Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011).
Thirumalai, D. & Reddy, G. Are native proteins metastable?. Nat. Chem. 3, 910–911 (2011).
Cong, H. & Cao, W. Colloidal crystallization induced by capillary force. Langmuir 19, 8177–8181 (2003).
Xue, N., Wu, S., Sun, S., Quéré, D. & Zheng, Q. Strongly metastable assemblies of particles at liquid interfaces. Langmuir 30, 14712–14716 (2014).
Liljeström, V., Chen, C., Dommersnes, P., Fossum, J. O. & Gröschel, A. H. Active structuring of colloids through field-driven self-assembly. Curr. Opin. Colloid Interface Sci. 40, 25–41 (2019).
Mayer, A. M. A note on experiments with floating magnets; showing the motions and arrangements in a plane of freely moving bodies, acted on by forces of attraction and repulsion; and serving in the study of the directions and motions of the lines of magnetic force. Am. J. Sci. Arts 15, 276–277 (1878).
Mayer, A. M. Floating magnets. Nature 17, 487–488 (1878).
Mayer, A. M. Floating magnets. Nature 18, 258–260 (1878).
Thomson, J. J. Cathode rays. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 44, 293–316 (1897).
Thomson, J. J. On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 7, 237–265 (1904).
Thomson, W. Floating magnets. Nature 18, 13–14 (1878).
Kragh, H. The first subatomic explanations of the periodic system. Found. Chem. 3, 25 (2001).
Chayut, M. J. J. Thomson: The discovery of the electron and the chemists. Ann. Sci. 48, 527–544 (1991).
Snelders, H. A. M. A. M. Mayer’s experiments with floating magnets and their use in the atomic theories of matter. Ann. Sci. 33, 67–80 (1976).
Kralchevsky, P. A. & Nagayama, K. Capillary forces between colloidal particles. Langmuir 10, 23–36 (1994).
Vella, D. & Mahadevan, L. The, “cheerios effect’’. Am. J. Phys. 73, 817–825 (2005).
Dong, X. & Sitti, M. Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. Int. J. Robot. Res. 39, 617–638 (2020).
Vandewalle, N. et al. Symmetry breaking in a few-body system with magnetocapillary interactions. Phys. Rev. E 85, 041402 (2012).
Grosjean, G. et al. Remote control of self-assembled microswimmers. Sci. Rep. 5, 1–8 (2015).
Collard, Y., Grosjean, G. & Vandewalle, N. Magnetically powered metachronal waves induce locomotion in self-assemblies. Commun. Phys. 3, 1–10 (2020).
Culha, U., Davidson, Z. S., Mastrangeli, M. & Sitti, M. Statistical reprogramming of macroscopic self-assembly with dynamic boundaries. Proc. Natl. Acad. Sci. 117, 11306–11313 (2020).
Piñan Basualdo, F. N., Bolopion, A., Gauthier, M. & Lambert, P. A microrobotic platform actuated by thermocapillary flows for manipulation at the air–water interface. Sci. Robot. 6, eabd3557 (2021).
Piñan Basualdo, F. N. et al. Effect of insoluble surfactants on a thermocapillary flow. Phys. Fluids 33, 072106 (2021).
Niu, W., Zhang, L. & Xu, G. Seed-mediated growth of noble metal nanocrystals: Crystal growth and shape control. Nanoscale 5, 3172–3181 (2013).
Beltramo, P. J., Schneider, D., Fytas, G. & Furst, E. M. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids. Phys. Rev. Lett. 113, 205503 (2014).
Cheng, W., Wang, J., Jonas, U., Fytas, G. & Stefanou, N. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5, 830–836 (2006).
Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).
Yethiraj, A., Thijssen, J. H., Wouterse, A. & van Blaaderen, A. Large-area electric-field-induced colloidal single crystals for photonic applications. Adv. Mater. 16, 596–600 (2004).
Xia, Y., Gates, B. & Li, Z.-Y. Self-assembly approaches to three-dimensional photonic crystals. Adv. Mater. 13, 409–413 (2001).
Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).
Holtz, J. H. & Asher, S. A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997).
Shipway, A. N., Katz, E. & Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1, 18–52 (2000).
Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).
Velikov, K. P., Moroz, A. & van Blaaderen, A. Photonic crystals of core-shell colloidal particles. Appl. Phys. Lett. 80, 49–51 (2002).
Mikhael, J., Roth, J., Helden, L. & Bechinger, C. Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454, 501–504 (2008).
Yin, Y., Lu, Y., Gates, B. & Xia, Y. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).
Dong, A., Ye, X., Chen, J. & Murray, C. B. Two-dimensional binary and ternary nanocrystal superlattices: The case of monolayers and bilayers. Nano Lett. 11, 1804–1809 (2011).
Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).
Korkut, S., Saville, D. A. & Aksay, I. A. Collodial cluster arrays by electrohydrodynamic printing. Langmuir 24, 12196–12201 (2008).
Lu, Y., Yin, Y. & Xia, Y. A self-assembly approach to the fabrication of patterned, two-dimensional arrays of microlenses of organic polymers. Adv. Mater. 13, 34–37 (2001).
Kralchevsky, P. et al. Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces. J. Phys. Condens. Matter 6, A395 (1994).
Velikov, K. P., Christova, C. G., Dullens, R. P. & van Blaaderen, A. Layer-by-layer growth of binary colloidal crystals. Science 296, 106–109 (2002).
Jiang, P., Prasad, T., McFarland, M. J. & Colvin, V. L. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. Appl. Phys. Lett. 89, 011908 (2006).
Xia, Y., Yin, Y., Lu, Y. & McLellan, J. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv. Func. Mater. 13, 907–918 (2003).
Demirors, A. F., Beltramo, P. J. & Vutukuri, H. R. Colloidal switches by electric and magnetic fields. ACS Appl. Mater. Interfaces 9, 17238–17244 (2017).
Grosjean, G., Hubert, M. & Vandewalle, N. Magnetocapillary self-assemblies: Locomotion and micromanipulation along a liquid interface. Adv. Coll. Interface. Sci. 255, 84–93 (2018).
Grosjean, G. et al. Capillary assemblies in a rotating magnetic field. Soft Matter 15, 9093–9103 (2019).