[en] The Mississippian is characterized worldwide by a general cooling of the environment and a climatic stratification of Earth. Argentina at that time was part of the megacontinent Gondwana. It occupied a position close to the South Pole around 60°S. Whereas paleoequatorial and paleotropical floras are relatively well known, higher latitude environments are still poorly understood. In this framework, a revision of Mississippian deposits is ongoing in Argentina. An extensive and detailed survey of the Sierra de las Minitas (La Rioja Province, western Argentina) involved drawing detailed sections and the systematic verification of all rock layers. Fossils were sampled and studied in the laboratory. We describe a new isoetalean lycopsid with a rare combination of characters. This plant presents an estimated low stature (approximately 30 cm), a branched rhizomorph, an inflated intermediary zone, a monocaulous growth form and evidence for cyclic fertility. These features are interpreted as representing specific adaptations to the harsher tundra conditions prevailing in the Lower Carboniferous Southern Polar environments.
Prestianni, Cyrille ; Université de Liège - ULiège > Département de géologie > Evolution and diversity dynamics lab ; OD Terres et Histoire de la Vie, Royal Belgian Institute of Natural Sciences, Bruxelles, Belgium
Rustán, Juan José; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Balseiro, Diego; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Córdoba, Argentina
Vaccari, N. Emilio ; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Córdoba, Argentina ; Universidad Nacional de La Rioja, La Rioja, Argentina
Language :
English
Title :
Porongodendron minitensis gen. nov. sp. nov. a new lycopsid from the Mississippian of Argentina with adaptations to tundra-like conditions
PC is hired under a Belspo Prf-2019(R)- 017_PaleoGreen FED-tWIN project from the Belgian Federal Government (PALEOGREEN). This research was supported by a FNRS travel grant. We would particularly like to thank all persons that were involved in the collecting of this material. The reconstructions were made by Santiago Druetta. We would also like to thank Richard Bateman and an anonymous reviewer for their very valuable and useful comments.
Archangelsky, S, CL Azcuy, RH Wagner. 1981. Three dwarf lycophytes from the Carboniferous of Argentina. Scr Geol. 64: 1–35.
Archangelsky, S. 1983. Una nueva licofita herbácea del Devónico de las Islas Malvinas, Argentina. Rev Técnologica Yacimientos Pet Fisc Boliv. 9: 129–135.
Arrondo, OG, SN Césari, and P Guttiérrez. 1991. Frenguellia a new genus of lycopods from Early Carboniferous of Argentina. Rev Palaeobot Palynol. 70 (3): 187–197. doi: 10.1016/0034-6667(91)90001-J.
Azcuy, CL, HA Carrizo. 1995. Archaeosigillaria conferta (Carbonífero temprano) en el Bolsón de Jagüé, La Rioja, Argentina. Ameghiniana. 32: 279–286.
Balseiro, D, JJ Rustán, M Ezpeleta, NE Vaccari. 2009. A new Serpukhovian (Mississippian) fossil flora from western Argentina: paleoclimatic, paleobiogeographic and stratigraphic implications. Palaeogeogr Palaeoclimatol Palaeoecol. 280 (3–4): 517–531. doi: 10.1016/j.palaeo.2009.07.005.
Barrat-Segretain, MH. 2001. Biomass allocation in three macrophyte species in relation to the disturbance level of their habitat. Freshwater Biology. 46 (7): 935–945. doi: 10.1046/j.1365-2427.2001.00728.x.
Bateman, RM, P Kenrick, GW Rothwell. 2007. Do eligulate herbaceous lycopsids occur in Carboniferous strata? Hestia eremosa gen. et sp. nov. from the Mississippian of Oxroad Bay, East Lothian, Scotland. Rev Palaeobot Palynol. 144 (3–4): 323–335. doi: 10.1016/j.revpalbo.2006.08.002.
Bateman, RM, J Hilton. 2009. Palaeobotanical systematics for the phylogenetic age: applying organspecies, form-species and phylogenetic species concepts in a framework of reconstructed fossil and extant whole-plants. Taxon. 58 (4): 1254–1280. doi: 10.1002/tax.584016.
Begon, M, CR Townsend, JL Harper. 2006. Ecology from individuals to ecosystems. Fourth ed. Malden (USA): Blackwell.
Bek, J, J Drábková, J Dašková, M Libertín. 2008. The sub-arborescent lycopsid genus Polysporia Newberry and its spores from the Pennsylvanian (Bolsovian-Stephanian B) continental basins of the Czech Republic. Rev Palaeobot Palynol. 152 (3–4): 176–199. doi: 10.1016/j.revpalbo.2008.05.002.
Bliss, LC. 1962. Adaptations of Arctic and alpine plants to environmental conditions. Artic. 15: 117–144.
Bonacorsi, NK, AB Leslie. 2019. Functional diversity and convergence in the evolution of plant reproductive structures. Annals of Botany. 123 (1): 145–152. doi: 10.1093/aob/mcy151.
Caputo, MV, JHG De Melo, S Maurice, and JL Isbell. 2008. Late Devonian and Early Carboniferous glacial records of South America. Spec Pap Geol Soc Am. 441 (11): 161–173. doi: 10.1130/2008.2441(11).
Carrizo, HA, CL Azcuy. 1998. El perfil del cerro Mudadero y su flora fósil. Provincia de La Rioja (Argentina): Acta Geológica Lilloana. Vol. 18 p. 81–99.
Carrizo, HA, CL Azcuy. 2006, November. Gilboaphyton argentinum sp. A Herbaceous Lycopod from the Early Carboniferous of Argentina. Rev Bras Paleontol 9: 33–40.
Carrizo, HA, CL Azcuy 2015. Floras Neodevónicas-Eocarboníferas de Argentina. Fundación. Tucumán.
Césari, SN, CO Limarino, EL Gulbranson. 2011. An Upper Paleozoic bio-chronostratigraphic scheme for the western margin of Gondwana. Earth-Science Rev [Internet]. 106 (1–2): 149–160. doi: 10.1016/j.earscirev.2011.01.012.
Chaloner, WG, OA Boureau. 1967. Lycophyta. In O A Boureau, H Fja, W G Chaloner, editors. Trait Paléobotanique. Vol. 2. Masson et. Paris. 435–802.
Chitaley, S, KB Pigg. 1996. Clevelandodendron ohioensis, gen. et sp. nov., a slender upright lycopsid from the late devonian cleveland Shale of Ohio. Am J Bot. 83 (6): 781–789. doi: 10.2307/2445855.
DiMichele, WA, JF Mahaffy, TL Phillips. 1979. Lycopods of Pennsylvanian age coals: polysporia. Can J Bot. 57 (16): 1740–1753. doi: 10.1139/b79-214.
DiMichele, WA, RM Bateman. 1996. The Rhizomorphic Lycopsids: a case-study in paleobotanical classification. Systematic Botany. 21 (4): 535–552. doi: 10.2307/2419613.
Ezpeleta, M, JJ Rustán, D Balseiro, FM Dávila, JA Dahlquist, NE Vaccari, AF Sterren, C Prestianni, GA Cisterna, M Basei. 2020. Glaciomarine sequence stratigraphy in the Mississippian Río Blanco Basin, Argentina, southwestern Gondwana. Basin analysis and palaeoclimatic implications for the late Paleozoic ice age during the tournaisian. J Geol Soc London. 177 (6): 1107–1128. doi: 10.1144/jgs2019-214.
Fairon-Demaret, M, J Hilton, CM Berry. 1999. Surface preparation of macrofossils (dégagement). In T P Jones, N P Rowe, editors. Foss plants spores Mod Tech. London: The Geological Society; p. 33–35.
Frenguelli, J. 1951. Floras devónicas de la Precordillera de San Juan. Rev la Asoc Geológica Argentina. 6: 83–94.
Frenguelli, J. 1952. “Haplostigma furquei” n sp. del Devónico de la Precordillera de San Juan. Rev la Asoc Geológica Argentina 7: 5–11.
Guttiérrez, P, OG Arrondo. 1994. Revisión de las licopsidas de la Argentina. 1. Archaeosigillaria Kidston y Frenguellia Arrondo, Césari y Gutierrez. Vol. 31, Ameghiniana. p. 381–393.
Guttiérrez, P. 1996. Revisión de las licópsidas de la Argentina. 2. Malanzania Archangelsky, Azcuy and Wagner y Haplostigma Seward; con notas Cyclostigma Haughton. Vol. 31, Ameghiniana. p. 381–393.
Iannuzzi, R, O Rösler. 2000. Floristic migration in South America during the Carboniferous: phytogeographic and biostratigraphic implications. Palaeogeogr Palaeoclimatol Palaeoecol. 161 (1–2): 71–94. doi: 10.1016/S0031-0182(00)00118-8.
Isaacson, PE, E Díaz-Martínez, GW Grader, J Kalvoda, O Babek, FX Devuyst. 2008. Late Devonian-earliest Mississippian glaciation in Gondwanaland and its biogeographic consequences. Palaeogeogr Palaeoclimatol Palaeoecol. 268 (3–4): 126–142. doi: 10.1016/j.palaeo.2008.03.047.
Kerp, H, CH Wellman, M Krings, P Kearney, and H Hass. 2013. Reproductive organs and in situ spores of Asteroxylon mackiei kidston & lang, the most complex plant from the lower devonian Rhynie chert. Int J Plant Sci. 174 (3): 293–308. doi: 10.1086/668613.
Limarino, CO, LA Spalletti. 2006. Paleogeography of the upper Paleozoic basins of Southern South America: an overview. J South Am Earth Sci. 22 (3–4): 134–155. doi: 10.1016/j.jsames.2006.09.011.
Matsumura, WMK, R Iannuzzi, EP Bosetti. 2015. Middle Devonian herbaceous lycopsid Haplostigma from the Paraná Basin, Brazil: taxonomy, biostratigraphy and Phytogeography. Geobios [Internet]. 48 (5): 397–415. doi: 10.1016/j.geobios.2015.07.001.
Menéndez, CA. 1965. Archaeosigillaria conferta (Frenguelli) nov. comb. del Devónico de la quebrada de la Chavela, San Juan. Vol. 4, Ameghiniana. p. 67–69.
Menéndez, CA. 1967. Guìa Paleontológica Argentina. Buenos Aires: Paleozoico, sección 7: Floras devónicas. Parte I.
Moisan, P, H Niemeyer, H Kerp. 2011. Lycopsids from the Upper Devonian of northern Chile with remarks on the geographical distribution of the morphogenus Haplostigma Seward. Palaontologische Zeitschrift. 85 (3): 231–240. doi: 10.1007/s12542-010-0093-6.
Montañez, IP, CJ Poulsen. 2013. The late Paleozoic ice age: an evolving paradigm. Annu Rev Earth Planet Sci. 41 (1): 629–656. doi: 10.1146/annurev.earth.031208.100118.
Morel, C, EM Cingolani, R Varela, A Zuñiga. 1993. Devonian and lower carboniferous plant remains from the Northern precordillera, la rioja province, Argentina. In XII Congrés Int la Stratigr Géologie du Carbonifère Permien (Buenos Aires) Comptes Rendus. Vol. 2. Buenos Aires; p. 127–140.
Niklas, KJ. 1998. The influence of gravity and wind on land plant evolution. Rev Palaeobot Palynol. 102 (1–2): 1–14. doi: 10.1016/S0034-6667(98)00011-6.
Niklas KJ. 2004, May. Computer models of early land plant evolution. Annu Rev Earth Planet Sci. 32: 47–66. https://doi.org/10.1146/annurev.earth.32.092203.122440
P’Yankov, VI, LA Ivanov. 2000. Biomass allocation in boreal plants with different ecological strategies. Russian Journal of Ecology. 31 (1): 3–10. doi: 10.1007/BF02799718.
Petriella, B, OG Arrondo. 1978. Presencia de Archaeosigillaria conferta (Frenguelli) Menéndez en al Carbónico Inferior de Argentina. Ameghiniana. 15: 406–408.
Pfefferkorn, HW, V Alleman, R Iannuzzi. 2014. A greenhouse interval between icehouse times: climate change, long-distance plant dispersal, and plate motion in the Mississippian (late Visean-earliest Serpukhovian) of Gondwana. Gondwana Res [Internet]. 25 (4): 1338–1347. doi: 10.1016/j.gr.2013.08.022.
Pigg, KB, GW Rothwell. 1983a. Megagametophyte Development in the Chaloneriaceae. Fam Nov Permineralized Paleozoic Isoetales (Lycopsida). 144 (2): 295–302.
Pigg, KB, GW Rothwell. 1983b November. Chaloneria gen. Heterosporous Lycophytes from the Pennsylvanian of North America. 144 (1): 132–147. Bot Gazzette
Pigg, KB, TN Taylor. 1985. Cormophyton gen. nov. a Cormose Lycopod from the Middle Pennsylvanian Mazon Creek Flora. Rev Palaeobot Palynol 44 (3–4): 165–181.
Pigg, KB. 1992. Evolution of isoetalean lycopsids. Ann Missouri Bot Gard. 79 (3): 589–612. doi: 10.2307/2399754.
Pigg, KB. 2001. Isoetalean lycopsid evolution: from the Devonian to the present. Am Fern J. 91 (3): 99–114. doi: 10.1640/0002-8444(2001)091[0099:.
Playford, G, and JHG Melo. 2010. Morphological variation and distribution of the Tournaisian (Early Mississippian) miospore Waltzispora lanzonii DAEMON 1974. Neues Jahrb fur Geol und Palaontologie - Abhandlungen. 256 (2): 183–193. doi: 10.1127/0077-7749/2010/0043.
Prestianni, C, JJ Rustán, D Balseiro, E Vaccari, AF Sterren, P Steemans, C Rubinstein, RA Astini. 2015. Early seed plants from Western Gondwana: paleobiogeographical and ecological implications based on Tournaisian (lower carboniferous) records from Argentina. Palaeogeogr Palaeoclimatol Palaeoecol [Internet]. 417: 210–219. doi: 10.1016/j.palaeo.2014.10.039
Rørslett, B, P Brettum. 1989. The genus Isoetes in Scandinavia: an ecological review and perspectives. Aquatic Botany. 35 (3–4): 223–261. doi: 10.1016/0304-3770(89)90001-6.
Scalabrini Ortiz, J. 1972. El Carbónico en el sector Septentrional de la Precordillera sanjuanina. Rev la Asoc Geológica Argentina. 27: 351–377.
Schwarz, EHL. 1906. South African Palaeozoic fossils. Rec Albany Museum South Africa. 1: 347–404.
Seward, AC, J Walton. 1923. On a collection of fossil plants from the Falkland Islands. Quarterly Journal of the Geological Society. 79 (1–4): 313–333. doi: 10.1144/GSL.JGS.1923.079.01-04.18.
Seward, AC. 1932. Fossil plants from the Bokkeveld and Witteberg beds of South Africa. Quarterly J Geol Soc London. 88 (1–4): 358–369. doi: 10.1144/GSL.JGS.1932.088.01-04.15.
Stampfli, GM, C Hochard, C Vérard, C Wilhem, J vonRaumer. 2013. The formation of Pangea. Tectonophysics. 593: 1–19. doi: 10.1016/j.tecto.2013.02.037
Sterren, AF, GA Cisterna, JJ Rustán, NE Vaccari, D Balseiro, M Ezpeleta, C Prestianni. 2021, July. New invertebrate peri-glacial faunal assemblages in the Agua de Lucho Formation, Río Blanco Basin, Argentina. The most complete marine fossil record of the early Mississippian in South America. J South Am Earth Sci. 106: 2020. doi: 10.1016/j.jsames.2020.103078
Taylor, WC, RJ Hickey. 1992. Habitat, evolution, and speciation in isoetes. Annals of the Missouri Botanical Garden. 79 (3): 613–622. doi: 10.2307/2399755.
Wielgolaski, FE. 1997a. Chapter 1 introduction. In F E Wielgolaski, editor. Ecosyst world 3, polar Alp tundra. Amsterdam: Elsevier; p. 1–5.
Wielgolaski, FE. 1997b. Chapter 2 adaptation in plants. In F E Wielgolaski, editor. Ecosyst world 3, polar Alp tundra. Amsterdam: Elsevier; p. 7–10.
Zhang, YY, JZ Xue, L Liu, DM Wang. 2016. Periodicity of reproductive growth in lycopsids: an example from the upper devonian of Zhejiang province, China. Palaeoworld [Internet]. 25 (1): 12–20. doi: 10.1016/j.palwor.2015.07.002.