Catalysis; Dehydration; Furfural; Green chemistry; Process Chemistry and Technology; Physical and Theoretical Chemistry
Abstract :
[en] The production of biobased furfural has been known for a long time. Nevertheless, two recent concepts, namely bioeconomy and circular economy, have motivated the research line towards improving production schemes and diversifying potential applications. Accordingly, this review will put the spot on the recent advances of furfural production from organic feedstock rich in free sugars and/or structural or reserve polysaccharides. The review will highlight the recent progress in the furfural production in batch system following different pathways, including (i) non-catalytic routes, (ii) use of various homogeneous catalysts like mineral or organic acids, metal salts or ionic liquids, (iii) feedstock dehydration using diverse solid acid catalysts; (iv) feedstock dehydration over supported catalysts, and (v) other heterogeneous catalytic routes.
Disciplines :
Chemistry
Author, co-author :
Adhami, Wissal; Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Paris, France
Richel, Aurore ; Université de Liège - ULiège > TERRA Research Centre > Technologie Alimentaire (TA)
Len, Christophe ; Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), Paris, France ; Sorbonne Universités, Université de Technologie de Compiègne, Compiègne, France
Language :
English
Title :
A review of recent advances in the production of furfural in batch system
ADEME - Agence de l'Environnement et de la Maîtrise de l'Energie
Funding text :
This project, under contract no. 2182D0404, was supported by Programme d'investissements d'avenir operated by ADEME. Moreover, the authors would like to thank 3 competitiveness clusters namely Bioeconomy for Change, Xylofutur and Agri Sud-Ouest Innovation that have labelled the project.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Anyaoha, K.E., Zhang, L., Transition from fossil-fuel to renewable-energy-based smallholder bioeconomy: techno-economic analyses of two oil palm production systems. Chem. Eng. J. Adv., 10, 2022, 100270, 10.1016/j.ceja.2022.100270.
Kamm, B., Gruber, P.R., Kamm, M., Wiley-VCH. Biorefineries-industrial processes and products. Ullmann's Encyclopedia of Industrial Chemistry, 2006, Weinheim, 1–38.
Yoro, K.O., Daramola, M.O., Sekoai, P.T., Armah, E.K., Wilson, U.N., Advances and emerging techniques for energy recovery during absorptive CO2 capture: a review of process and non-process integration-based strategies. Renew. Sustain. Energy Rev., 147, 2021, 111241, 10.1016/j.rser.2021.111241.
Clark, J., Luque, R., Matharu, A., Green chemistry, Biofuels, and biorefinery. Annu. Rev. Chem. Biomol. Eng. 3 (2012), 183–207, 10.1146/annurev-chembioeng-062011-081014.
Hessel, V., Tran, N.N., Asrami, M.R., Tran, Q.D., Long, N.V.D., Escribà-Gelonch, M., Tejada, J.O., Linke, S., Sundmacher, K., Sustainability of green solvents–review and perspective. Green Chem. 24 (2022), 410–437, 10.1039/D1GC03662A.
Ivanković, A., Dronjić, A., Bevanda, A., Talić, S., Review of 12 principles of green chemistry in practice. Int. J. Sustain. Green Energy 6 (2017), 39–48, 10.11648/j.ijrse.20170603.12.
Kerton, F.M., Marriott, R., Alternative Solvents For Green Chemistry, 2013, Royal Society of chemistry, 10.1039/9781849736824.
Zimmerman, J.B., Anastas, P.T., Erythropel, H.C., Leitner, W., Designing for a green chemistry future. Science 367 (2020), 397–400, 10.1126/science.aay3060.
Aresta, M., Dibenedetto, A., Dumeignil, F., Biorefinery: from biomass to chemicals and fuels. Collection: From Biomass to chemicals and fuels, 2012, Walter de Gruyter (Eds, Berlin, Boston, 10.1515/9783110260281.
Gaurav, N., Sivasankari, S., Kiran, G., Ninawe, A., Selvin, J., Utilization of bioresources for sustainable biofuels: a review. Renew. Sustain. Energy Rev. 73 (2017), 205–214, 10.1016/j.rser.2017.01.070.
Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M., An overview of second generation biofuel technologies. Bioresour. Technol. 101 (2010), 1570–1580, 10.1016/j.biortech.2009.11.046.
Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., Beltramini, J., Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40 (2011), 5588–5617, 10.1039/c1cs15124j.
Zhu, J., Yan, C., Zhang, C., Xin, Yang, Jiang, C., Zhang, M., Xiangwu, A sustainable platform of lignin: from bioresources to materials and their applications in rechargeable batteries and supercapacitors. PECS, 76, 2020, 100788, 10.1016/j.pecs.2019.100788.
Takkellapati, S., Li, T., Gonzalez, M.A., An overview of biorefinery derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol. Environ. Policy 20 (2018), 1615–1630, 10.1007/s10098-018-1568-5.
Su, T., Zhao, D., Khodadadi, M., Len, C., Lignocellulosic biomass for bioethanol: recent advances, technology trends and barriers to industrial development. Curr. Opin. Green Sustain. Chem. 24 (2020), 56–60, 10.1016/j.cogsc.2020.04.005.
Farias da Costa, A.A., de Nazare de Oliveira, A., Esposito, R., Len, C., Luque, R., Noronha, R.C.R., de Rocha Filho, G.N., Santos, L.A., Nascimento, D., Glycerol and catalysis by waste/low-cost materials – a review. Catalysts, 12, 2022, 570, 10.3390/catal12050570.
Nguyen, R., Galy, N., Alasmary, F.A., Len, C., Microwave-assisted continuous flow for the selective oligomerization of glycerol. Catalysts, 11, 2021, 166, 10.3390/catal11020166.
Khodadadi, M.R., Malpartida, I., Tsang, C.W., Lin, C.S.K., Len, C., Recent advances on the catalytic conversion of waste cooking oil. Mol. Catal., 494, 2020, 111128, 10.1016/j.mcat.2020.111128.
Mazière, A., Garcia, A., Prinsen, P., Luque, R., Len, C., A review on progress in catalytic routes from and to renewable succinic acid. BioFPR 11 (2017), 908–931, 10.1002/bbb.1785.
Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., Granados, M.L., Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 9 (2016), 1144–1189, 10.1039/C5EE02666K.
Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K., Marlair, G., Len, C., Hydrolysis of hemicellulose and derivatives—a review of recent advances in the production of furfural. Front. Chem., 6, 2018, 146, 10.3389/fchem.2018.00146.
Wang, T., Nolte, M.W., Shanks, B.H., Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem. 16 (2014), 548–572, 10.1039/C3GC41365A.
Delbecq, F., Len, C., Recent advances in the microwave-assisted production of hydroxymethylfurfural y hydrolysis of cellulose derivatives – a review. Molecules 23 (2018), 1973–1988, 10.3390/molecules23081973.
Baldania, A., Vibhute, B., Parikh, S., A review on production of furfural from biomass. Int. J. Sci. Eng. Res. 11 (2020), 1705–1707.
Xu, C., Paone, E., Rodriguez-Padron, D., Luque, R., Mauriello, F., Recent catalytic routes for the preparation and the upgrading of biomass derived furfural anf 5-hydroxymethylfurfural. Chem. Soc. Rev. 49 (2020), 4273–4306, 10.1039/D0CS00041H.
Yong, K.J., Wu, T.Y., Lee, C.B.T.L., Lee, Z.J., Liu, Q., Jahim, J.M., Zhou, Q., Zhang, L., Furfural production from biomass residues: current technologies, challenges and future prospects. Biomass Bioenergy, 161, 2022, 106458, 10.1016/j.biombioe.2022.106458.
Li, X., Jia, P., Wang, T., Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 6 (2016), 7621–7640, 10.1021/acscatal.6b01838.
Gomez Millan, G., Hellsten, S., Llorca, J., Luque, R., Sixta, H., Balu, A.M., Recent advances in the catalytic production of platform chemicals from holocellulosic biomass. ChemCatChem 11 (2019), 2022–2042, 10.1002/cctc.201801843.
Liu, B., Zhang, Z., One-pot conversion of carbohydrates into furan derivatives via furfural and 5-hydroxylmethylfurfural as intermediates. ChemSusChem 9 (2016), 2015–2036, 10.1002/cssc.201600507.
Ebringerová, A., Structural diversity and application potential of hemicelluloses. Macromol. Symp. 232 (2005), 1–12, 10.1002/masy.200551401.
Wang, Y., Delbecq, F., Varma, R.S., Len, C., Comprehensive study on expeditious conversion of pre-hydrolyzed alginic acid to furfural in Cu(II) biphasic system using microwaves. Mol. Catal. 445 (2018), 73–79, 10.1016/j.mcat.2017.11.013.
Modelska, M., Binczarski, M.J., Dziugan, P., Nowak, S., Romanowska-Duda, Z., Sadowski, A., Witonska, I.A., Potential of waste biomass from the sugar industry as a source of furfural and its derivatives for use as fuel additives in Poland. Energies, 13, 2020, 6684, 10.3390/en13246684.
Gómez Millán, G., Hellsten, S., King, A.W.T., Pokki, J.P., Llorca, J., Sixta, H., A comparative study of water-immiscible organic solvents in the production of furfural from xylose and birch hydrolysate. J. Ind. Eng. Chem. 72 (2019), 354–363, 10.1016/j.jiec.2018.12.037.
Guenic, S.Le, Delbecq, F., Ceballos, C., Len, C., Microwave-aided dehydration of D-xylose into furfural by diluted inorganic salts solution in a biphasic system. J. Mol. Catal. A: Chemical 410 (2015), 1–7, 10.1016/j.molcata.2015.08.019.
Delbecq, F., Wang, Y., Len, C., Conversion of xylose, xylan and rice husk into furfural via betaine and formic acid mixture as novel homogeneous catalyst in biphasic system by microwave-assisted dehydration. J. Mol. Catal. A Chem. 423 (2016), 520–525, 10.1016/j.molcata.2016.07.003.
Guenic, S.Le, Gergela, D., Ceballos, C., Delbecq, F., Len, C., Furfural production from D-xylose and xylan by using stable Nafion NR50 and NaCl in a microwave-assisted biphasic reaction. Molecules 21 (2016), 1102–1112, 10.3390/molecules21081102.
Wang, Y., Len, T., Huang, Y., Tabaoda, A.D., Boa, A.N., Ceballos, C., Delbecq, F., Mackenzie, G., Len, C., Sulfonated Sporopollenin as an efficient and recyclable heterogeneous catalyst for dehydration of D-xylose and xylan into furfural. ACS Sustain. Chem. Eng. 5 (2017), 392–398, 10.1021/acssuschemeng.6b01780.
Wang, Y., Delbecq, F., Kwapinski, W., Len, C., Application of sulfonated carbon-based catalyst for the furfural production from D-xylose and xylan in a microwave-assisted biphasic reaction. Mol. Catal. 438 (2017), 167–172, 10.1016/j.mcat.2017.05.031.
Lin, Q., Liao, S., Li, L., Li, W., Yue, F., Peng, F., Ren, J., Solvent effect on xylose conversion under catalyst-free conditions: insights from molecular dynamics simulation and experiments. Green Chem. 22 (2020), 532–539, 10.1039/C9GC03624E J.
Lin, Q., Zhan, Q., Li, R., Liao, S., Ren, J., Peng, F., Li, L., Solvent effect on xylose-to-furfural reaction in biphasic systems: combined experiments with theoretical calculations. Green Chem. 23 (2021), 8510–8518, 10.1039/D1GC02812J.
Özbek, H.N., Fockink, D.H., Yanık, D.K., Göğüş, F., Łukasik, R.M., The green biorefinery concept for the valorisation of pistachio shell by high-pressure CO2/H2O system. J. Cleaner Prod. 196 (2018), 842–851, 10.1016/j.jclepro.2018.06.062.
Bhat, N.S., Vinod, N., Onkarappa, S.B., Dutta, S., Hydrochloric acid-catalyzed coproduction of furfural and 5-(chloromethyl)furfural assisted by a phase transfer catalyst. Carbohydr. Res., 496, 2020, 108105, 10.1016/j.carres.2020.108105.
Peleteiro, S., Raspolli Galletti, A.M., Antonetti, C., Santos, V., Parajó, J.C., Manufacture of furfural from xylan-containing biomass by acidic processing of hemicellulose-derived saccharides in biphasic media using microwave heating. J. Wood Chem. Technol. 38 (2018), 198–213, 10.1080/02773813.2017.1418891.
Krzelj, V., Ferreira Liberal, J., Papaioannou, M., van der Schaaf, J., Neira d'Angelo, M.F., Kinetic model of D-xylose dehydration for a wide range of sulfuric acid concentrations. Ind. Eng. Chem. Res. 59 (2020), 11991–12003, 10.1021/acs.iecr.0c01197.
Köchermann, J., Schreiber, J., Klemm, M., Conversion of D-xylose and hemicellulose in water/ethanol mixtures. ACS Sustain. Chem. Eng. 7 (2019), 12323–12330, 10.1021/acssuschemeng.9b01697.
Liu, J., Liu, H., Chen, L., An, Y., Jin, X., Li, X., Liu, Z., Wang, G., Liu, R., Study on the removal of lignin from pre-hydrolysis liquor by laccase-induced polymerization and the conversion of xylose to furfural. Green Chem. 24 (2022), 1603–1614, 10.1039/D1GC04277G.
Wang, Q., Zhuang, X., Wang, W., Tan, X., Yu, Q., Qi, W., Yuan, Z., Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system. Chem. Eng. J. 334 (2018), 698–706, 10.1016/j.cej.2017.10.089.
Ricciardi, L., Verboom, W., Lange, J.P., Huskens, J., Selectivity switch by phase switch – the key to a high-yield furfural process. Green Chem. 23 (2021), 8079–8088, 10.1039/D1GC01752G.
Wiranarongkorn, K., Im-orb, K., Panpranot, J., Maréchal, F., Arpornwichanop, A., Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation. Energy, 226, 2021, 120339, 10.1016/j.energy.2021.120339.
Hronec, M., Fulajtárová, K., Terephthalic acid from waste PET: an efficient and reusable catalyst for xylose conversion into furfural. Catal. Today 324 (2019), 27–32, 10.1016/j.cattod.2018.06.015.
Zhang, Q., Wang, C., Mao, J., Ramaswamy, S., Zhang, X., Xu, F., Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent. Ind. Crops Prod., 138, 2019, 111454, 10.1016/j.indcrop.2019.06.017.
Li, Z., Luo, Y., Jiang, Z., Fang, Q., Hu, C., The promotion effect of NaCl on the conversion of xylose to furfural. Chin. J. Chem. 38 (2020), 178–184, 10.1002/cjoc.201900433.
Wang, J., Wang, J.H., Yu, Y.M., Effective and safer catalyst KHSO4 for producing furfural: a platform compound. Biomass Conv. Bioref. 11 (2021), 1293–1300, 10.1007/s13399-019-00516-z.
Sun, Y.M., Wang, J., Yu, Y., Wang, J.H., Chen, M.G., Chen, M.Q., Furfural preparation using KHSO4 as the catalyst and its recovery and reuse. BioRes. 16 (2020), 190–208, 10.15376/biores.16.1.190-208.
Liu, C., Wei, L., Yin, X., Wei, M., Xu, J., Jiang, J., Wang, K., Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution. Ind. Crops Prod., 147, 2020, 112248, 10.1016/j.indcrop.2020.112248.
Chen, Y., Zhou, Y., Zhang, R., Hu, C., Conversion of saccharides in enteromorpha prolifera to furfurals in the presence of FeCl3. Mol. Catal., 484, 2020, 110729, 10.1016/j.mcat.2019.110729.
Zhang, Q., Guo, Z., Zeng, X., Ramarao, B., Xu, F., A sustainable biorefinery strategy: conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations. Renew. Energy 179 (2021), 351–358, 10.1016/j.renene.2021.07.031.
Peleteiro, S., Rivas, S., Alonso, J.L., Santos, V., Parajo, J.C., Furfural production using ionic liquids: a review. Bioresour. Technol. 202 (2016), 181–191, 10.1016/j.biortech.2015.12.017.
Chen, Y., Mu, T., Revisiting greenness of ionic liquids and deep eutectic solvents. Green Chem. Eng. 2 (2021), 174–186, 10.1016/j.gce.2021.01.004.
Zhang, Z., Song, J., Han, B., Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 117 (2017), 6834–6880, 10.1021/acs.chemrev.6b00457.
Diallo, A.O., Fayet, G., Len, C., Marlair, G., Evaluation of heats of combustion of ionic liquids through use of existing and purpose built models. Ind. Eng. Chem. Res. 51 (2012), 3149–3156, 10.1021/ie2023788.
Diallo, A.O., Len, C., Morgan, A.B., Marlair, G., Revisiting phys-chem. Related safety issues of ionic liquids. Sep. Purif. Technol. 97 (2012), 228–234, 10.1016/j.seppur.2012.02.016 b.
Diallo, A.O., Morgan, A.B., Len, C., Marlair, G., An innovative experimental approach aiming to understand and quantifiy the acual fire hazards of ionic liquids. Energy Environ. Sci. 6 (2013), 699–710, 10.1039/c2ee23926d.
Chancelier, L., Diallo, A.O., Santini, C.C., Marlair, G., Gutel, T., S. Mailley, S., Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage. Phys. Chem. Chem. Phys. 16 (2014), 1967–1976, 10.1039/c3cp54225d.
Bado-Nilles, A., Diallo, A.O., Marlair, G., Pandard, P., Chabot, L., A. Geffard, A., Coupling of OECD standardized test and immunomarlers to select the most environmentally benign ionic liquid option – towards an innovative “safety by design” approach. J. Hazard. Mater. 283 (2015), 202–210, 10.1016/j.jhazmat.2014.09.023.
Hua, D., Ding, H., Liu, Y., Li, J., Han, B., Dehydration of xylose to furfural over imidazolium-based ionic liquid with phase separation. Catalysts, 11, 2021, 1552, 10.3390/catal11121552.
Nowicki, J., Stanek, N., Conversion of selected carbohydrates into furan aldehydes in aqueous media. Effect of cation structure of imidazolium ionic liquids on the selectivity phenomena. Biomass Bioenergy, 154, 2021, 106252, 10.1016/j.biombioe.2021.106252.
Zhao, Y., Xu, H., Lu, K., Qu, Y., Zhu, L., Wang, S., Dehydration of xylose to furfural in butanone catalyzed by Brønsted-Lewis acidic ionic liquids. Energy Sci. Eng. 7 (2019), 2237–2246, 10.1002/ese3.444.
Zhao, Y., Xu, H., Wang, K., Lu, K., Qu, Y., Zhu, L., Wang, S., Enhanced furfural production from biomass and its derived carbohydrates in the renewable butanone–water solvent system. Sustain. Energy Fuels 3 (2019), 3208–3218, 10.1039/C9SE00459A.
Zhao, Y., Xu, H., Lu, K., Qu, Y., Zhu, L., Wang, S., Experimental and kinetic study of arabinose conversion to furfural in renewable butanone–water solvent mixture catalyzed by Lewis acidic ionic liquid catalyst. Ind. Eng. Chem. Res. 58 (2019), 17088–17097, 10.1021/acs.iecr.9b03420.
Nie, Y., Hou, Q., Li, W., Bai, C., Bai, X., Ju, M., Efficient synthesis of furfural from biomass using SnCl4 as catalyst in ionic liquid. Molecules, 24, 2019, 594, 10.3390/molecules24030594 [68.
Huang, T., Yuan, K., Nie, X.L., Chen, J., Zhang, H.X., Chen, J.Z., Xiong, W.M., Preparation of furfural from xylose catalyzed by diimidazole hexafluorophosphate in microwave. Front. Chem., 9, 2021, 727382, 10.3389/fchem.2021.727382.
Gomes, G.R., Scopel, E., Breitkreitz, M.C., Rezende, C.A., Pastre, J.C., Valorization of sugarcane bagasee C5-fraction by furfural production mediated by renewable glycine-based ionic liquid. Ind. Crops Prod., 191, 2023, 115940, 10.1016/j.indcrop.2022.115940.
Li, X., Lu, X., Liang, M., Xu, R., Yu, Z., Duan, B., Lu, L., Si, C., Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Waste Manag. 108 (2020), 119–126, 10.1016/j.wasman.2020.04.039.
Gómez Millán, G., Phiri, J., Mäkelä, M., Maloney, T., Balu, A.M., Pineda, A., Llorca, J., Sixta, H., Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Appl. Catal. A Gen., 585, 2019, 117180, 10.1016/j.apcata.2019.117180.
Ojeda, M., Balu, A.M., Romero, A.A., Esquinazi, P., Ruokolainen, J., Sixta, H., Luque, R., MAGBONS: novel magnetically separable carbonaceous nanohybrids from porous polysaccharides. ChemCatChem 6 (2014), 2847–2853, 10.1002/cctc.201402280.
Li, W., Zhang, T., Pei, G., Catalytic conversion of corn stover into furfural over carbon-based solid acids. Bioresources 13 (2018), 1425–1440, 10.15376/biores.13.1.1425-1440.
Cai, D., Chen, H., Zhang, C., Teng, X., Li, X., Si, Z., Li, G., Yang, S., Wang, G., Qin, P., Carbonized core-shell diatomite for efficient catalytic furfural production from corn cob. J. Clean. Prod., 283, 2021, 125410, 10.1016/j.jclepro.2020.125410.
Yang, T., Li, W., Su, M., Liu, Y., Liu, M., Production of furfural from xylose catalyzed by a novel calcium gluconate derived carbon solid acid in 1,4-dioxane. New J. Chem. 44 (2020), 7968–7975, 10.1039/D0NJ00619J.
Ma, J., Li, W., Guan, S., Liu, Q., Li, Q., Zhu, C., Yang, T., Ogunbiyi, A.T., Ma, L., Efficient catalytic conversion of corn stalk and xylose into furfural over sulfonated graphene in γ-valerolactone. RSC Adv. 9 (2019), 10569–10577, 10.1039/C9RA01411J.
Zheng, Y., Jiao, Y., Ge, L., Jaroniec, M., Qiao, S.Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 125 (2013), 3192–3198, 10.1002/ange.201209548.
Antonyraj, C.A., Haridas, A., A lignin-derived sulphated carbon for acid catalyzed transformations of bio-derived sugars. Catal. Commun. 104 (2018), 101–105, 10.1016/j.catcom.2017.10.029.
Wang, X., Qiu, M., Tang, Y., Yang, J., Shen, F., Qi, X., Yu, Y., Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose. Int. J. Biol. Macromol. 187 (2021), 232–239, 10.1016/j.ijbiomac.2021.07.155.
Lin, Q., Zhang, C., Wang, X., Cheng, B., Mai, N., Ren, J., Impact of activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catal. Today 319 (2019), 31–40, 10.1016/j.cattod.2018.03.070.
Xiong, S., Luo, C., Yu, Z., Ji, N., Zhu, L., Wang, S., Dual -functional carbon-based solid acid-induced hydrothermal conversion of biomass saccharides: catalyst rational design and kinetic analysis. Green Chem. 23 (2021), 8458–8467, 10.1039/D1GC01968F.
Kalita, P., Datta, P., Baruah, P.K., Conversion of fructose and xylose into platform chemicals using organo-functionalized mesoporous material. ChemistrySelect 3 (2018), 10971–10976, 10.1002/slct.201801315.
Pawar, H.S., Sulfonic acid anchored heterogeneous acid-catalyst DICAT-3 for conversion of xylose into furfural in biphasic solvent system. ChemistrySelect 5 (2020), 916–923, 10.1002/slct.201903894.
Jorge, E.Y.C., Lima, C.G.S., Lima, T.M., Marchini, L., Gawande, M.B., Tomanec, O., Varma, R.S., Paixão, M.W., Sulfonated dendritic mesoporous silica nanospheres: a metal-free Lewis acid catalyst for the upgrading of carbohydrates. Green Chem. 22 (2020), 1754–1762, 10.1039/C9GC03489G.
Zhang, T., Li, W., An, S., Huang, F., Li, X., Liu, J., Pei, G., Liu, Q., Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid. Bioresour. Technol. 264 (2018), 261–267, 10.1016/j.biortech.2018.05.081.
Yang, T., Chen, D., Li, W., Zhang, H., Efficient conversion of corn stover to 5-hydroxymethylfurfural and furfural using a novel acidic resin catalyst in water-1, 4-dioxane system. Mol. Catal., 515, 2021, 111920, 10.1016/j.mcat.2021.111920.
Zhang, L., He, Y., Zhu, Y., Liu, Y., Wang, X., Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst. Bioresour. Technol. 249 (2018), 536–541, 10.1016/j.biortech.2017.10.061.
Sánchez, V., Dafinov, A., Salagre, P., Llorca, J., Cesteros, Y., Microwave-assisted furfural production using hectorites and fluorohectorites as catalysts. Catalysts, 9, 2019, 706, 10.3390/catal9090706.
Wang, R., Liang, X., Shen, F., Qiu, M., Yang, J., Qi, X., Mechanochemical synthesis of sulfonated palygorskite solid acid catalyst for selective catalytic conversion of xylose to furfural. ACS Sustain. Chem. Eng. 8 (2020), 1163–1170, 10.1021/acssuschemeng.9b06239.
Romo, J.E., Wu, T., Huang, X., Lucero, J., Irwin, J.L., Bond, J.Q., Carreon, M.A., Wettstein, S.G., SAPO-34/5A zeolite bead catalysts for furan production from xylose and glucose. ACS Omega 3 (2018), 16253–16259, 10.1021/acsomega.8b02461.
Wang, L., Guo, H., Xie, Q., Wang, J., Hou, B., Jia, L., Cui, J., Li, D., Conversion of fructose into furfural or 5-hydroxymethylfurfural over HY zeolites selectively in γ-butyrolactone. Appl. Catal. A Gen. 572 (2019), 51–60, 10.1016/j.apcata.2018.12.023.
Gupta, A., Nandanwar, S.U., Niphadkar, P., Simakova, I., Bokade, V., Maximization of furanic compounds formation by dehydration and hydrogenation of xylose in one step over SO3–H functionalized H-β catalyst in alcohol media. Biomass Bioenergy, 139, 2020, 105646, 10.1016/j.biombioe.2020.105646.
Wang, L., Guo, H., Wang, Q., Hou, B., Jia, L., Cui, J., Li, D., The study of active sites for producing furfural and soluble oligomers in fructose conversion over HZSM-5 zeolites. Mol. Catal., 474, 2019, 110411, 10.1016/j.mcat.2019.110411.
Pattnaik, F., Nanda, S., Kumar, V., Naik, S., Dalai, A.K., Subcritical water hydrolysis of Phragmites for sugar extraction and catalytic conversion to platform chemicals. Biomass Bioenergy, 145, 2021, 105965, 10.1016/j.biombioe.2021.105965.
Vieira, J.L., Almeida-Trapp, M., Mithöfer, A., Plass, W., Gallo, J.M.R., Rationalizing the conversion of glucose and xylose catalyzed by a combination of Lewis and Brønsted acids. Catal. Today 344 (2020), 92–101, 10.1016/j.cattod.2018.10.032.
de Lima, L.F., Lima, J.L.M., Jorqueira, D.S.S., Landers, R., Moya, S.F., Suppino, R.S., Use of amorphous Nb2O5 and Nb2O5/Al2O3 as acid catalysts for the dehydration of xylose to furfural. Reac. Kinet. Mech. Catal. 132 (2021), 73–92, 10.1007/s11144-021-01931-y.
Mishra, R.K., Kumar, V.B., Victor, A., Pulidindi, I.N., Gedanken, A., Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst. Ultrason. Sonochem. 56 (2019), 55–62, 10.1016/j.ultsonch.2019.03.015.
de Carvalho, R.S., de A. Rodrigues, F., Monteiro, R.S., da Silva Faria, W.L., Optimization of furfural synthesis from xylose using niobic acid and niobium phosphate as catalysts. Waste Biomass Valor. 10 (2019), 2673–2680, 10.1007/s12649-018-0272-3.
Wang, X., Li, H., Lin, Q., Li, R., Li, W., Wang, X., Peng, F., Ren, J., Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts. Bioresour. Technol., 290, 2019, 121764, 10.1016/j.biortech.2019.121764.
Chatterjee, A., Hu, X., Lam, F.L.Y., A dual acidic hydrothermally stable MOF-composite for upgrading xylose to furfural. Appl. Catal. A Gen. 566 (2018), 130–139, 10.1016/j.apcata.2018.04.016.
Zhou, N., Zhang, C., Cao, Y., Zhan, J., Fan, J., Clark, J.H., Zhang, S., Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system. J. Clean. Prod., 311, 2021, 127780, 10.1016/j.jclepro.2021.127780.
Gong, L., Xu, Z.Y., Dong, J.J., Li, H., Han, R.Z., Xu, G.C., Ni, Y., Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresour. Technol., 293, 2019, 122065, 10.1016/j.biortech.2019.122065.
Chatterjee, A., Hu, X., Lam, F.L.Y., Catalytic activity of an economically sustainable fly-ash-metal-organic- framework composite towards biomass valorization. Catal. Today 314 (2018), 137–146, 10.1016/j.cattod.2018.01.018.
Xu, S., Pan, D., Wu, Y., Fan, J., Wu, N., Gao, L., Li, W., Xiao, G., Catalytic conversion of xylose and xylan into furfural over Cr3+ /P-SBA-15 catalyst derived from spent adsorbent. Ind. Eng. Chem. Res. 58 (2019), 13013–13020, 10.1021/acs.iecr.9b01821.
Guo, X., Guo, F., Li, Y., Zheng, Z., Xing, Z., Zhu, Z., Liu, T., Zhang, X., Jin, Y., Dehydration of D-xylose into furfural over bimetallic salts of heteropolyacid in DMSO/H2O mixture. Appl. Catal. A Gen. 558 (2018), 18–25, 10.1016/j.apcata.2018.03.027.
Teng, X., Si, Z., Li, S., Yang, Y., Wang, Z., Li, G., Zhao, J., Cai, D., Qin, P., Tin-loaded sulfonated rape pollen for efficient catalytic production of furfural from corn stover. Ind. Crops Prod., 151, 2020, 112481, 10.1016/j.indcrop.2020.112481.
Danon, B., Marcotullio, G., de Jong, W., Mechanistic and kinetic aspects of pentose dehydration towards furfural in aquous media employing homogeneous catalysis. Green Chem. 16 (2014), 39–54, 10.1039/C3GC41351A.
Funez-Nunez, I., Garcia-Sancho, C., Ceciclia, J.A., Moreno-Tost, R., Perez-Inestrosa, E., Serrano-Cantador, L., Maireles-Torres, P., Synergetic effect between CaCl2 and γ-Al2O3 for furfural production by dehydration of hemicellulosic carbohydrates. Appl. Catal. A Gen., 585, 2019, 117188, 10.1016/j.apcata.2019.117188.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.