Arabidopsis Proteins; Lipids; Sterols; Phytochrome; Carbon; Autophagy/genetics; Carbon/metabolism; Cell Membrane/metabolism; Gene Expression Regulation, Plant; Hypocotyl/genetics; Light; Sterols/metabolism; Arabidopsis/metabolism; Arabidopsis Proteins/genetics; Arabidopsis Proteins/metabolism; Phytochrome/metabolism; Arabidopsis; Autophagy; Cell Membrane; Hypocotyl; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Multidisciplinary; Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry
Abstract :
[en] Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Ince, Yetkin Çaka ; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Krahmer, Johanna; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Fiorucci, Anne-Sophie ; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Trevisan, Martine ; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Galvão, Vinicius Costa; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Wigger, Leonore ; Genomic Technologies Facility, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Pradervand, Sylvain; Genomic Technologies Facility, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Fouillen, Laetitia ; Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
Van Delft, Pierre ; Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
Genva, Manon ; Université de Liège - ULiège > Département GxABT > Chemistry for Sustainable Food and Environmental Systems (CSFES) ; Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
Mongrand, Sebastien; Univ. Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, F-33140, Villenave d'Ornon, France
Gallart-Ayala, Hector; Metabolomics Platform, Faculty of Biology and Medicine, Rue du Bugnon 19, University of Lausanne, CH-1005, Lausanne, Switzerland
Ivanisevic, Julijana ; Metabolomics Platform, Faculty of Biology and Medicine, Rue du Bugnon 19, University of Lausanne, CH-1005, Lausanne, Switzerland
Fankhauser, Christian ; Center for Integrative Genomics, Faculty of Biology and Medicine, Génopode Building, University of Lausanne, CH-1015, Lausanne, Switzerland. christian.fankhauser@unil.ch
F.R.S.-FNRS - Fonds de la Recherche Scientifique ANR - Agence Nationale de la Recherche SNF - Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung ULiège - Université de Liège UNIL - Université de Lausanne
Work in the Fankhauser lab is supported by the University of Lausanne and the Swiss National Science Foundation (310030B_179558) and the Velux Foundation (Project 1455). The Bordeaux Metabolome-Lipidome Facility-MetaboHUB by a grant from ANR (no. ANR–11–INBS–0010). Manon Genva thanks the National Fund for Scientific Research (FNRS, Belgium, through grant 2022/V 3/5/053-40010130-JG/JN-2724) and the University of Liège for mobility grants.We thank Martina Legris, Laure Allenbach Petrolati, Olivier Michaud, Mieke de Wit, Anupama Goyal, Ana Lopez Vazquez, Ganesh Mahadeo Nawkar, and Maud Lagier for providing resources, technical support and/or comments on the manuscript; René Dreos for advice on statistical methods; Niko Geldner, Ersin Gül (ETH Zurich), Sinem Celebioven (University Zurich), Soner Yildiz (Icahn School of Medicine) and Yasin Dagdas (GMI, Vienna) for suggestions and comments on the manuscript; Christian Hardtke, Teva Vernoux (ENS Lyon), Richard Vierstra (Washington University, St Louis), Dany Geelen (University Gent) and Yasin Dagdas for providing resources. We are grateful to the CIF ( https://cif.unil.ch/ ) for help with microscopy, the GTF ( https://wp.unil.ch/gtf/ ) for RNA-seq. experiments and the Metabolomics Unit ( https://www.unil.ch/metabolomics/en/home.html ) for the lipidomic analysis and the Bordeaux-Metabolome platform for sterol analysis ( https://www.biomemb.cnrs.fr/en/lipidomic-plateform/ ). Work in the Fankhauser lab is supported by the University of Lausanne and the Swiss National Science Foundation (310030B_179558) and the Velux Foundation (Project 1455). The Bordeaux Metabolome-Lipidome Facility-MetaboHUB by a grant from ANR (no. ANR–11–INBS–0010). Manon Genva thanks the National Fund for Scientific Research (FNRS, Belgium, through grant 2022/V 3/5/053-40010130-JG/JN-2724) and the University of Liège for mobility grants.
McCree, K. J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9, 191–216 (1971). DOI: 10.1016/0002-1571(71)90022-7
Liu, J. & van Iersel, M. W. Photosynthetic physiology of blue, green, and red light: light intensity effects and underlying mechanisms. Front. Plant Sci. 12, 619987 (2021). DOI: 10.3389/fpls.2021.619987
Casal, J. J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 64, 403–427 (2013). DOI: 10.1146/annurev-arplant-050312-120221
Fiorucci, A. S. & Fankhauser, C. Plant strategies for enhancing access to sunlight. Curr. Biol. 27, R931–R940 (2017). DOI: 10.1016/j.cub.2017.05.085
Buti, S., Hayes, S. & Pierik, R. The bHLH network underlying plant shade-avoidance. Physiol. Plant 169, 312–324 (2020). DOI: 10.1111/ppl.13074
Wang, X., Gao, X., Liu, Y., Fan, S. & Ma, Q. Progress of research on the regulatory pathway of the plant shade-avoidance syndrome. Front Plant Sci. 11, 439 (2020). DOI: 10.3389/fpls.2020.00439
Ballare, C. L. & Pierik, R. The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ. 40, 2530–2543 (2017). DOI: 10.1111/pce.12914
Smith, A. M. & Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126–1149 (2007). DOI: 10.1111/j.1365-3040.2007.01708.x
Moraes, T. A. et al. Response of the circadian clock and diel starch turnover to one day of low light or low CO2. Plant Physiol. 179, 1457–1478 (2019). DOI: 10.1104/pp.18.01418
Hersch, M. et al. Light intensity modulates the regulatory network of the shade avoidance response in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 6515–6520 (2014). DOI: 10.1073/pnas.1320355111
Legris, M., Ince, Y. C. & Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 10, 5219 (2019). DOI: 10.1038/s41467-019-13045-0
Fernandez-Milmanda, G. L. & Ballare, C. L. Shade avoidance: expanding the color and hormone palette. Trends Plant Sci. 26, 509–523 (2021). DOI: 10.1016/j.tplants.2020.12.006
Hornitschek, P. et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J. 71, 699–711 (2012). DOI: 10.1111/j.1365-313X.2012.05033.x
Kohnen, M. V. et al. Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28, 2889–2904 (2016). DOI: 10.1105/tpc.16.00463
Li, L. et al. Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26, 785–790 (2012). DOI: 10.1101/gad.187849.112
Muller-Moule, P. et al. YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ 4, e2574 (2016). DOI: 10.7717/peerj.2574
Nito, K. et al. Spatial Regulation of the gene expression response to shade in Arabidopsis seedlings. Plant Cell Physiol. 56, 1306–1319 (2015). DOI: 10.1093/pcp/pcv057
Nozue, K. et al. Shade avoidance components and pathways in adult plants revealed by phenotypic profiling. PLoS Genet. 11, e1004953 (2015). DOI: 10.1371/journal.pgen.1004953
Keuskamp, D. H., Pollmann, S., Voesenek, L. A., Peeters, A. J. & Pierik, R. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc. Natl Acad. Sci. USA 107, 22740–22744 (2010). DOI: 10.1073/pnas.1013457108
Procko, C., Crenshaw, C. M., Ljung, K., Noel, J. P. & Chory, J. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol. 165, 1285–1301 (2014). DOI: 10.1104/pp.114.241844
Oh, E. et al. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3, https://doi.org/10.7554/eLife.03031 (2014).
Cifuentes-Esquivel, N. et al. The bHLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings. Plant J. 75, 989–1002 (2013). DOI: 10.1111/tpj.12264
Kozuka, T. et al. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol. 153, 1608–1618 (2010). DOI: 10.1104/pp.110.156802
de Wit, M. et al. Integration of phytochrome and cryptochrome signals determines plant growth during competition for light. Curr. Biol. 26, 3320–3326 (2016). DOI: 10.1016/j.cub.2016.10.031
Keller, M. M. et al. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67, 195–207 (2011). DOI: 10.1111/j.1365-313X.2011.04598.x
Pedmale, U. V. et al. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164, 233–245 (2016). DOI: 10.1016/j.cell.2015.12.018
Ma, D. et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc. Natl Acad. Sci. USA 113, 224–229 (2016). DOI: 10.1073/pnas.1511437113
Keuskamp, D. H. et al. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J. 67, 208–217 (2011). DOI: 10.1111/j.1365-313X.2011.04597.x
Pierik, R., Djakovic-Petrovic, T., Keuskamp, D. H., de Wit, M. & Voesenek, L. A. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and Della proteins in Arabidopsis. Plant Physiol. 149, 1701–1712 (2009). DOI: 10.1104/pp.108.133496
Gendreau, E. et al. Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol. 114, 295–305 (1997). DOI: 10.1104/pp.114.1.295
Hepler, P. K., Rounds, C. M. & Winship, L. J. Control of cell wall extensibility during pollen tube growth. Mol. Plant 6, 998–1017 (2013). DOI: 10.1093/mp/sst103
Steer, M. W. & Steer, J. M. Pollen tube tip growth. N. Phytologist 111, 323–358 (1989). DOI: 10.1111/j.1469-8137.1989.tb00697.x
Mamode Cassim, A. et al. Plant lipids: key players of plasma membrane organization and function. Prog. Lipid Res. 73, 1–27 (2019). DOI: 10.1016/j.plipres.2018.11.002
Boutté, Y. & Jaillais, Y. Metabolic cellular communications: feedback mechanisms between membrane lipid homeostasis and plant development. Dev. Cell https://doi.org/10.1016/j.devcel.2020.05.005 (2020).
de Wit, M. et al. Changes in resource partitioning between and within organs support growth adjustment to neighbor proximity in Brassicaceae seedlings. Proc. Natl Acad. Sci. USA 115, E9953–E9961 (2018).
Valitova, J. N., Sulkarnayeva, A. G. & Minibayeva, F. V. Plant sterols: diversity, biosynthesis, and physiological functions. Biochemistry 81, 819–834 (2016).
Yu, M., Cui, Y., Zhang, X., Li, R. & Lin, J. Organization and dynamics of functional plant membrane microdomains. Cell Mol. Life Sci. 77, 275–287 (2020). DOI: 10.1007/s00018-019-03270-7
Gronnier, J. et al. Mechanisms governing subcompartmentalization of biological membranes. Curr. Opin. Plant Biol. 52, 114–123 (2019). DOI: 10.1016/j.pbi.2019.08.003
Verbancic, J., Lunn, J. E., Stitt, M. & Persson, S. Carbon supply and the regulation of cell wall synthesis. Mol. Plant 11, 75–94 (2018). DOI: 10.1016/j.molp.2017.10.004
Chen, Q. et al. Autophagy and nutrients management in plants. Cells 8, https://doi.org/10.3390/cells8111426 (2019).
Li, F. & Vierstra, R. D. Autophagy: a multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 17, 526–537 (2012). DOI: 10.1016/j.tplants.2012.05.006
Wang, P., Mugume, Y. & Bassham, D. C. New advances in autophagy in plants: regulation, selectivity and function. Semin Cell Dev. Biol. 80, 113–122 (2018). DOI: 10.1016/j.semcdb.2017.07.018
Sun, N. et al. Arabidopsis SAURs are critical for differential light regulation of the development of various organs. Proc. Natl Acad. Sci. USA 113, 6071–6076 (2016). DOI: 10.1073/pnas.1604782113
Lorrain, S., Allen, T., Duek, P. D., Whitelam, G. C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312–323 (2008). DOI: 10.1111/j.1365-313X.2007.03341.x
Chung, B. Y. W. et al. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat. Plants 10.1038/s41477-020-0633-3 (2020).
Carland, F., Fujioka, S. & Nelson, T. The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol. 153, 741–756 (2010). DOI: 10.1104/pp.109.152587
Carland, F. M. The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell Online 14, 2045–2058 (2002). DOI: 10.1105/tpc.003939
Hase, Y. et al. Ectopic endoreduplication caused by sterol alteration results in serrated petals in Arabidopsis. J. Exp. Bot. 56, 1263–1268 (2005). DOI: 10.1093/jxb/eri122
Zhang, B. et al. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6https://doi.org/10.7554/eLife.26759 (2017).
Galvao, V. C. et al. PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat. Commun. 10, 4005 (2019). DOI: 10.1038/s41467-019-11882-7
He, J. X. et al. Sterols regulate development and gene expression in Arabidopsis. Plant Physiol. 131, 1258–1269 (2003). DOI: 10.1104/pp.014605
Feng, H. et al. Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6. Plant Physiol. 140, 1345–1354 (2006). DOI: 10.1104/pp.105.074138
Zheng, Z. et al. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nat. Plants 2, 16025 (2016). DOI: 10.1038/nplants.2016.25
Carland, F. & Nelson, T. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. Plant J. 59, 895–907 (2009). DOI: 10.1111/j.1365-313X.2009.03920.x
Chapman, E. J. et al. Hypocotyl transcriptome reveals auxin regulation of growth-promoting genes through GA-dependent and -independent pathways. PLoS ONE 7, e36210 (2012). DOI: 10.1371/journal.pone.0036210
de Wit, M., Ljung, K. & Fankhauser, C. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. N. Phytol. 208, 198–209 (2015). DOI: 10.1111/nph.13449
Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012). DOI: 10.1038/nature10791
Aldana, J., Romero-Otero, A. & Cala, M. P. Exploring the lipidome: current lipid extraction techniques for mass spectrometry analysis. Metabolites 10, https://doi.org/10.3390/metabo10060231 (2020).
Gocze, P. M. & Freeman, D. A. Factors underlying the variability of lipid droplet fluorescence in MA-10 Leydig tumor cells. Cytometry 17, 151–158 (1994). DOI: 10.1002/cyto.990170207
Graham, I. A. Seed storage oil mobilization. Annu. Rev. Plant Biol. 59, 115–142 (2008). DOI: 10.1146/annurev.arplant.59.032607.092938
Cagnola, J. I., Ploschuk, E., Benech-Arnold, T., Finlayson, S. A. & Casal, J. J. Stem transcriptome reveals mechanisms to reduce the energetic cost of shade-avoidance responses in tomato. Plant Physiol. 160, 1110–1119 (2012). DOI: 10.1104/pp.112.201921
Bou-Torrent, J. et al. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis. J. Exp. Bot. 65, 2937–2947 (2014). DOI: 10.1093/jxb/eru083
Mamode Cassim, A. et al. Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. J. Biol. Chem. 296, 100602 (2021). DOI: 10.1016/j.jbc.2021.100602
Thompson, A. R., Doelling, J. H., Suttangkakul, A. & Vierstra, R. D. Autophagic nutrient recycling in arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097–2110 (2005). DOI: 10.1104/pp.105.060673
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012). DOI: 10.4161/auto.19496
Shin, K. D., Lee, H. N. & Chung, T. A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol. Cells 37, 399–405 (2014). DOI: 10.14348/molcells.2014.0042
Stephani, M. et al. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. eLife 9, https://doi.org/10.7554/eLife.58396 (2020).
Torggler, R., Papinski, D. & Kraft, C. Assays to monitor autophagy in Saccharomyces cerevisiae. Cells 6, https://doi.org/10.3390/cells6030023 (2017).
Yoshimoto, K. et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967–2983 (2004). DOI: 10.1105/tpc.104.025395
Hu, S., Ye, H., Cui, Y. & Jiang, L. AtSec62 is critical for plant development and is involved in ER-phagy in Arabidopsis thaliana. J. Integr. Plant Biol. 62, 181–200 (2020). DOI: 10.1111/jipb.12872
Hofius, D. et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773–783 (2009). DOI: 10.1016/j.cell.2009.02.036
Procko, C. et al. The epidermis coordinates auxin-induced stem growth in response to shade. Genes Dev. 30, 1529–1541 (2016). DOI: 10.1101/gad.283234.116
Pucciariello, O. et al. Rewiring of auxin signaling under persistent shade. Proc. Natl Acad. Sci. USA 115, 5612–5617 (2018). DOI: 10.1073/pnas.1721110115
Ibanez, C. et al. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr. Biol. 28, 303–310 e303 (2018). DOI: 10.1016/j.cub.2017.11.077
Fiorucci, A. S. et al. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. N. Phytol. 226, 50–58 (2019). DOI: 10.1111/nph.16316
Qiu, Y. Regulation of PIF4-mediated thermosensory growth. Plant Sci. 297, 110541 (2020). DOI: 10.1016/j.plantsci.2020.110541
Tao, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164–176 (2008). DOI: 10.1016/j.cell.2008.01.049
Kozuka, T. et al. Regulation of sugar and storage oil metabolism by phytochrome during de-etiolation. Plant Physiol. 182, 1114–1129 (2020). DOI: 10.1104/pp.19.00535
Boccaccini, A. et al. Low blue light enhances phototropism by releasing cryptochrome1-mediated inhibition of PIF4 expression. Plant Physiol. 183, 1780–1793 (2020). DOI: 10.1104/pp.20.00243
Brunkard, J. O. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. Dev. Cell 54, 142–155 (2020). DOI: 10.1016/j.devcel.2020.06.022
Van Leene, J. et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327 (2019). DOI: 10.1038/s41477-019-0378-z
Araujo, W. L. et al. Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22, 1549–1563 (2010). DOI: 10.1105/tpc.110.075630
Izumi, M., Hidema, J., Makino, A. & Ishida, H. Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol. 161, 1682–1693 (2013). DOI: 10.1104/pp.113.215632
Buchanan-Wollaston, V. et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42, 567–585 (2005). DOI: 10.1111/j.1365-313X.2005.02399.x
Das, D., St Onge, K. R., Voesenek, L. A., Pierik, R. & Sasidharan, R. Ethylene- and shade-induced hypocotyl elongation share transcriptome patterns and functional regulators. Plant Physiol. 172, 718–733 (2016).
Casal, J. J. & Balasubramanian, S. Thermomorphogenesis. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-050718-095919 (2019).
Ince, Y. C. & Galvao, V. C. Analysis of shade-induced hypocotyl elongation in Arabidopsis. Methods Mol. Biol. 2297, 21–31 (2021). DOI: 10.1007/978-1-0716-1370-2_3
Bensmihen, S. et al. Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett. 561, 127–131 (2004). DOI: 10.1016/S0014-5793(04)00148-6
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998). DOI: 10.1046/j.1365-313x.1998.00343.x
Bourbousse, C., Vegesna, N. & Law, J. A. SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc. Natl Acad. Sci. USA 115, E12453–E12462 (2018). DOI: 10.1073/pnas.1810582115
Gendrel, A. V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005). DOI: 10.1038/nmeth0305-213
Oh, E., Zhu, J. Y. & Wang, Z. Y. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802–809 (2012). DOI: 10.1038/ncb2545
Cacas, J. L. et al. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol. 170, 367–384 (2016). DOI: 10.1104/pp.15.00564
Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011). DOI: 10.1038/nprot.2011.335
Gagnebin, Y. et al. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies. Anal. Chim. Acta 955, 27–35 (2017). DOI: 10.1016/j.aca.2016.12.029
Tsugawa, H. et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015). DOI: 10.1038/nmeth.3393
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10.14806/ej.17.1.200 (2011).
Davis, M. P., van Dongen, S., Abreu-Goodger, C., Bartonicek, N. & Enright, A. J. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49 (2013). DOI: 10.1016/j.ymeth.2013.06.027
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). DOI: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015). DOI: 10.1093/bioinformatics/btu638
Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012). DOI: 10.1093/bioinformatics/bts356
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). DOI: 10.1093/bioinformatics/btp616
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). DOI: 10.1093/nar/gkv007
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020). DOI: 10.1093/bioinformatics/btz931
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002). DOI: 10.1093/nar/30.1.207