Compound Specific Stable Isotopes; Land use discrimination; N-alkanes; Sediment fingerprinting; Short chain neutral lipids fatty acids; Compound specific stable isotope; N-alkane; n-Alkanes; Neutral lipid; Sediment sources; Short chain neutral lipid fatty acid; Shorter chains; Stable isotopes; Soil Science
Abstract :
[en] Sediment fingerprinting (SF) methods using taxonomic-specific biomarkers such as n-alkanes have been successfully used to distinguish sediment sources originating from different land uses at a catchment scale. In this study, we hypothesise that using a combination of soil biomarkers of plant, fungal and bacterial origin may allow greater discrimination between land uses in SF studies. Furthermore, we assess if the inclusion of short chain (shorter than C22) neutral lipid fatty acids (SC-NLFA) improves land use discrimination, considering the Loch Davan catchment (34 km2) in Scotland as a case study. Fatty acids are commonly used to measure abundance and diversity of soil microbial and fungal communities. The spatial distribution of these soil communities has been shown to depend mainly on soil properties and, therefore, soil types and land management practices. The n-alkane and SC-NLFA concentrations and their compound specific stable isotope signatures (CSSI) in four land cover classes (crop land, pasture, forest, and moorland) were determined and their contribution to six virtual sediment mixture samples was modelled. Using a Bayesian un-mixing model, the performance of the combined n-alkane and SC-NLFA biomarkers in distinguishing sediment sources was assessed. The collection of new empirical data and novel combinations of biomarkers in this study found that land use can be distinguished more accurately in organic sediment fingerprinting when combining n-alkanes and SC-NLFA or using SC-NLFA and their CSSI alone. These results suggest that fingerprinting methods using the output of unmixing models could be improved by the use of multiple tracer sets if there is a commensurate way to determine which tracer set provides the “best” capacity for land use source discrimination. This new contribution to the organic sediment fingerprinting field highlights that different combinations of biomarkers may be required to optimise discrimination between soils from certain land use sources (e.g., arable-pasture). The use of virtual mixtures, as presented in this study, provides a method to determine if addition or removal of tracers can improve relative error in source discrimination. Combining biomarkers from different soil communities could have a significant impact on the identification of recent sources of sediment within catchments and therefore on the development of effective management strategies.
BBSRC - Biotechnology and Biological Sciences Research Council Lancaster University NERC - Natural Environment Research Council Rothamsted Research UoN - University of Nottingham Cranfield University SEPA - Scottish Environment Protection Agency BGS - British Geological Survey James Hutton Institute Bangor University
Funding text :
This work was supported by the Natural Environment Research Council; and the Biotechnology and Biological Sciences Research Council [grant number NE/M009106/1] through a studentship award to CW by STARS (Soils Training And Research Studentships) Centre for Doctoral Training and Research Programme; a consortium consisting of Bangor University, British Geological Survey, Centre for Ecology and Hydrology, Cranfield University, James Hutton Institute, Lancaster University, Rothamsted Research and the University of Nottingham. The authors thank the CASE funder for this work, the Scottish Environment Protection Agency (SEPA). Our thanks also go to Dr Nikki Baggaley at the James Hutton Institute for the provision of soils data.This work was supported by the Natural Environment Research Council ; and the Biotechnology and Biological Sciences Research Council [grant number NE/M009106/1] through a studentship award to CW by STARS (Soils Training And Research Studentships) Centre for Doctoral Training and Research Programme; a consortium consisting of Bangor University, British Geological Survey, Centre for Ecology and Hydrology, Cranfield University, James Hutton Institute, Lancaster University, Rothamsted Research and the University of Nottingham. The authors thank the CASE funder for this work, the Scottish Environment Protection Agency (SEPA). Our thanks also go to Dr Nikki Baggaley at the James Hutton Institute for the provision of soils data.
Addy, S., Ghimire, S., Cooksley, S., 2012. Assessment of the multiple benefits of river restoration: the Logie Burn meander reconnection project. BHS Elev. Natl. Symp. Hydrol. a Chang. world, Dundee 2012 01–05. 10.7558/bhs.2012.ns01.
Alewell, C., Birkholz, A., Meusburger, K., Schindler Wildhaber, Y., Mabit, L., Quantitative sediment source attribution with compound-specific isotope analysis in a C3 plant-dominated catchment (central Switzerland). Biogeosciences 13 (2016), 1587–1596, 10.5194/bg-13-1587-2016.
Ankit, Y., Muneer, W., Gaye, B., Lahajnar, N., Bhattacharya, S., Bulbul, M., Jehangir, A., Anoop, A., Mishra, P.K., Apportioning sedimentary organic matter sources and its degradation state- Inferences based on aliphatic hydrocarbons amino acids and δ15N. Environ. Res., 205, 2022, 112409, 10.1016/j.envres.2021.112409.
Bush, R.T., McInerney, F.A., Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117 (2013), 161–179, 10.1016/j.gca.2013.04.016.
Chen, F.X., Fang, N.F., Wang, Y.X., Tong, L.S., Shi, Z.H., Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales. Geomorphology 278 (2017), 1–11, 10.1016/j.geomorph.2016.10.027.
Chen, Y., Wang, Y., Yu, K., Zhao, Z., Lang, X., Occurrence characteristics and source appointment of polycyclic aromatic hydrocarbons and n-alkanes over the past 100 years in southwest China. Sci. Total Environ., 808, 2022, 151905, 10.1016/j.scitotenv.2021.151905.
Chikaraishi, Y., Naraoka, H., Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:3 (2003), 361–371, 10.1016/S0031-9422(02)00749-5.
Cole, B., King, S., Ogutu, B., Palmer, D., Smith, G., Balzter, H., 2015. Corine land cover 2012 for the UK, Jersey and Guernsey [WWW Document]. NERC Environ. Inf. Data Cent. URL 10.5285/32533dd6-7c1b-43e1-b892-e80d61a5ea1d (accessed 1.18.21).
Collins, A.L., Blackwell, M., Boeckx, P., Chivers, C.A., Emelko, M., Evrard, O., Foster, I., Gellis, A., Gholami, H., Granger, S., Harris, P., Horowitz, A.J., Laceby, J.P., Martinez-Carreras, N., Minella, J., Mol, L., Nosrati, K., Pulley, S., Silins, U., da Silva, Y.J., Stone, M., Tiecher, T., Upadhayay, H.R., Zhang, Y., Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes. J. Soils Sediments, 2020, 10.1007/s11368-020-02755-4.
Cooper, R.J., Pedentchouk, N., Hiscock, K.M., Disdle, P., Krueger, T., Rawlins, B.G., Apportioning sources of organic matter in streambed sediments: an integrated molecular and compound-specific stable isotope approach. Sci. Total Environ. 520 (2015), 187–197, 10.1016/j.scitotenv.2015.03.058.
Cranwell, P.A., Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Org. Geochem. 3 (1981), 79–89, 10.1016/0146-6380(81)90002-4.
Dominati, E., Patterson, M., Mackay, A., A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 69 (2010), 1858–1868, 10.1016/j.ecolecon.2010.05.002.
Dove, H., Mayes, R.W., Protocol for the analysis of n-alkanes and other plant-wax compounds and for their use as markers for quantifying the nutrient supply of large mammalian herbivores. Nat. Protoc. 1 (2006), 1680–1697, 10.1038/nprot.2006.225.
Fang, J., Wu, F., Xiong, Y., Li, F., Du, X., An, D., Wang, L., Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China. Sci. Total Environ. 473–474 (2014), 410–421, 10.1016/j.scitotenv.2013.10.066.
Fatahi, A., Gholami, H., Esmaeilpour, Y., Fathabadi, A., Fingerprinting the spatial sources of fine-grained sediment deposited in the bed of the Mehran River, southern Iran. Sci. Rep. 12 (2022), 1–17, 10.1038/s41598-022-07882-1.
Fenton, N., Neil, M., Risk Assessment and Decision Analysis with Bayesian Networks. 2018, CRC Press Taylor & Francis, Boca Raton, Florida, USA.
Ferlian, O., Cesarz, S., Marhan, S., Scheu, S., Carbon food resources of earthworms of different ecological groups as indicated by 13C compound-specific stable isotope analysis. Soil Biol. Biochem. 77 (2014), 22–30, 10.1016/j.soilbio.2014.06.002.
Ferrari, A.E., Ravnskov, S., Larsen, J., Tønnersen, T., Maronna, R.A., Wall, L.G., Crop rotation and seasonal effects on fatty acid profiles of neutral and phospholipids extracted from no-till agricultural soils. Soil Use Manag. 31 (2015), 165–175, 10.1111/sum.12165.
Ficken, K.J., Li, B., Swain, D.L., Eglinton, G., An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org. Geochem. 31 (2000), 745–749, 10.1016/S0146-6380(00)00081-4.
Galoski, C.E., Jiménez Martínez, A.E., Schultz, G.B., dos Santos, I., Froehner, S., Use of n-alkanes to trace erosion and main sources of sediments in a watershed in southern Brazil. Sci. Total Environ. 682 (2019), 447–456, 10.1016/j.scitotenv.2019.05.209.
Gibbs, M.M., Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method. Estuaries and Coasts 31 (2008), 344–359, 10.1007/s12237-007-9012-9.
Glaser, B., Zech, W., Reconstruction of climate and landscape changes in a high mountain lake catchment in the Gorkha Himal, Nepal during the Late Glacial and Holocene as deduced from radiocarbon and compound-specific stable isotope analysis of terrestrial, aquatic and microbi. Org. Geochem. 36 (2005), 1086–1098, 10.1016/j.orggeochem.2005.01.015.
Glendell, M., Jones, R., Dungait, J.A.J., Meusburger, K., Schwendel, A.C., Barclay, R., Barker, S., Haley, S., Quine, T.A., Meersmans, J., Tracing of particulate organic C sources across the terrestrial-aquatic continuum, a case study at the catchment scale (Carminowe Creek, southwest England). Sci. Total Environ. 616 (2018), 1077–1088, 10.1016/j.scitotenv.2017.10.211.
Gobin, A., Jones, R., Kirkby, M., Campling, P., Govers, G., Kosmas, C., Gentile, A.R., Indicators for pan-European assessment and monitoring of soil erosion by water. Environ. Sci. Policy 7 (2004), 25–38, 10.1016/j.envsci.2003.09.004.
Griepentrog, M., Bodé, S., Boeckx, P., Wiesenberg, G.L.B., The fate of plant wax lipids in a model forest ecosystem under elevated CO2 concentration and increased nitrogen deposition. Org. Geochem. 98 (2016), 131–140, 10.1016/j.orggeochem.2016.05.005.
Grimalt, J.O., Torras, E., Albaigés, J., Bacterial reworking of sedimentary lipids during sample storage. Org. Geochem. 13 (1988), 741–746, 10.1016/0146-6380(88)90096-4.
Hancock, G.J., Revill, A.T., Erosion source discrimination in a rural Australian catchment using compound-specific isotope analysis (CSIA). Hydrol. Process. 27 (2013), 923–932, 10.1002/hyp.9466.
Haubert, D., Häggblom, M.M., Langel, R., Scheu, S., Ruess, L., Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol. Biochem. 38 (2006), 2004–2007, 10.1016/j.soilbio.2005.11.031.
He, D., Ladd, S.N., Saunders, C.J., Mead, R.N., Jaff, R., Distribution of n-alkanes and their δ2H and δ13C values in typical plants along a terrestrial-coastal-oceanic gradient. Geochim. Cosmochim. Acta 281 (2020), 31–52.
Hemkemeyer, M., Dohrmann, A.B., Christensen, B.T., Tebbe, C.C., Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front. Microbiol. 9 (2018), 1–13, 10.3389/fmicb.2018.00149.
Hemkemeyer, M., Christensen, B.T., Tebbe, C.C., Hartmann, M., Taxon-specific fungal preference for distinct soil particle size fractions. Eur. J. Soil Biol., 94, 2019, 103103, 10.1016/j.ejsobi.2019.103103.
Hirave, P., Glendell, M., Birkholz, A., Alewell, C., Compound-specific isotope analysis with nested sampling approach detects spatial and temporal variability in the sources of suspended sediments in a Scottish mesoscale catchment. Sci. Total Environ., 2020, 142916, 10.1016/j.scitotenv.2020.142916.
Hirave, P., Wiesenberg, G.L.B., Birkholz, A., Alewell, C., Understanding the effects of early degradation on isotopic tracers: implications for sediment source attribution using compound-specific isotope analysis (CSIA). Biogeosciences Discuss., 1–18, 2020, 10.5194/bg-2019-205.
Jeng, W.L., Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar. Chem. 102 (2006), 242–251, 10.1016/j.marchem.2006.05.001.
Jenkins, D., (eds.) The biology and management of the River Dee, 1985, Institute of Terrestrial Ecology.
Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O'Donnell, A., Angers, D., Baldock, J., Barbier, E., Binkley, D., Parton, W., Wall, D.H., Bird, M., Bouma, J., Chenu, C., Flora, C.B., Goulding, K., Grunwald, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C.L., Rice, C.W., Whitehead, D., Young, I., Zimmermann, M., Soil security: solving the global soil crisis. Glob. Policy 4 (2013), 434–441, 10.1111/1758-5899.12096.
Lachance, C., Lobb, D.A., Pelletier, G., Thériault, G., Chrétien, F., Determination of sediment sources in a mixed watershed within the Appalachian-St. Lawrence Lowland Regions of southern Quebec using sediment fingerprinting. Environ. Monit. Assess., 192, 2020, 10.1007/s10661-020-08568-9.
Ladygina, N., Dedyukhina, E.G., Vainshtein, M.B., A review on microbial synthesis of hydrocarbons. Process Biochem. 41 (2006), 1001–1014, 10.1016/j.procbio.2005.12.007.
Lavrieux, M., Bréheret, J.G., Disnar, J.R., Jacob, J., Le Milbeau, C., Zocatelli, R., Preservation of an ancient grassland biomarker signature in a forest soil from the French Massif Central. Org. Geochem. 51 (2012), 1–10, 10.1016/j.orggeochem.2012.07.003.
Lavrieux, M., Birkholz, A., Meusburger, K., Wiesenberg, G.L.B., Gilli, A., Stamm, C., Alewell, C., Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis. Biogeosciences 16 (2019), 2131–2146, 10.5194/bg-16-2131-2019.
Lei, C., Wagner, P.D., Fohrer, N., Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecol. Indic., 120, 2021, 106940, 10.1016/j.ecolind.2020.106940.
Lilly, A., Baggaley, N.J., 2018. Soil erosion risk map of Scotland.
Liu, C., Hu, B.X., Li, Z., Yu, L., Peng, H., Wang, D., Huang, X., Linking soils and streams: chemical composition and sources of eroded organic matter during rainfall events in a Loess hilly-gully region of China. J. Hydrol., 600, 2021, 126518, 10.1016/j.jhydrol.2021.126518.
Liu, C., Wu, Z., Hu, B.X., Li, Z., Linking recent changes in sediment yields and aggregate-associated organic matter sources from a typical catchment of the Loess Plateau, China. Agric. Ecosyst. Environ., 321, 2021, 107606, 10.1016/j.agee.2021.107606.
Lizaga, I., Gaspar, L., Blake, W.H., Latorre, B., Navas, A., Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology 341 (2019), 216–229, 10.1016/j.geomorph.2019.05.015.
Lu, Y.H., Canuel, E.A., Bauer, J.E., Chambers, R.M., Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquat. Sci. 76 (2014), 419–436, 10.1007/s00027-014-0344-9.
McBratney, A., Field, D.J., Koch, A., The dimensions of soil security. Geoderma 213 (2014), 203–213, 10.1016/j.geoderma.2013.08.013.
Met Office, 2021. UK Climate Average [WWW Document]. URL https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-averages/gfjuxqwcs (accessed 1.18.21).
Meyers, P.A., Application of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurention Great Lakes. Org. Geochem. 34 (2003), 261–289, 10.1016/S0146-6380(02)00168-7.
Nitzsche, K.N., Kleeberg, A., Hoffmann, C., Merz, C., Premke, K., Gessler, A., Sommer, M., Kayler, Z.E., Kettle holes reflect the biogeochemical characteristics of their catchment area and the intensity of the element-specific input. J. Soils Sediments, 994–1009, 2022, 10.1007/s11368-022-03145-8.
Olsson, P.A., Van Aarle, I.M., Gavito, M.E., Bengtson, P., Bengtsson, G., 13C incorporation into signature fatty acids as an assay for carbon allocation in arbuscular mycorrhiza. Appl. Environ. Microbiol. 71 (2005), 2592–2599, 10.1128/AEM.71.5.2592-2599.2005.
Owens, P.N., Batalla, R.J., Collins, A.J., Gomez, B., Hicks, D.M., Horowitz, A.J., Kondolf, G.M., Marden, M., Page, M.J., Peacock, D.H., Petticrew, E.L., Salomons, W., Trustrum, N.A., Fine-grained sediment in river systems: environmental significance and management issues. River Res. Appl. 21 (2005), 693–717, 10.1002/rra.878.
Owens, P.N., Blake, W.H., Gaspar, L., Gateuille, D., Koiter, A.J., Lobb, D.A., Petticrew, E.L., Reiffarth, D.G., Smith, H.G., Woodward, J.C., Fingerprinting and tracing the sources of soils and sediments: earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Science Rev. 162 (2016), 1–23, 10.1016/j.earscirev.2016.08.012.
Palazón, L., Latorre, B., Gaspar, L., Blake, W.H., Smith, H.G., Navas, A., Comparing catchment sediment fingerprinting procedures using an auto-evaluation approach with virtual sample mixtures. Sci. Total Environ. 532 (2015), 456–466, 10.1016/j.scitotenv.2015.05.003.
Phillips, D.L., Gregg, J.W., Source partitioning using stable isotopes: coping with too many sources. Oecologia 136 (2003), 261–269, 10.1007/s00442-003-1218-3.
Pulley, S., Collins, A.L., Tracing catchment fine sediment sources using the new SIFT (SedIment Fingerprinting Tool) open source software. Sci. Total Environ. 635 (2018), 838–858, 10.1016/j.scitotenv.2018.04.126.
Puttock, A., Dungait, J.A.J., Macleod, C.J.A., Bol, R., Brazier, R.E., Organic carbon from dryland soils. J. Geophys. Res. Biogeosciences 119 (2014), 2345–2357, 10.1002/2014JG002635.
R Core Team, 2020. R: A language and environment for statistical computing.
Ranjan, R.K., Routh, J., Val Klump, J., Ramanathan, A.L., Sediment biomarker profiles trace organic matter input in the Pichavaram mangrove complex, southeastern India. Mar. Chem. 171 (2015), 44–57, 10.1016/j.marchem.2015.02.001.
Rickson, R.J., Baggaley, N., Deeks, L.K., Graves, A., Hannam, J., Keay, C., Lilly, A., 2019. Developing a method to estimate the costs of soil erosion in high- risk Scottish catchments. Report to the Scottish Government. Available online from https://www.gov.scot/ISBN/978-1-83960-754-7.
RStudio Team, 2018. RStudio: Integrated Development for R.
Scheurer, K., Alewell, C., Bänninger, D., Burkhardt-Holm, P., Climate and land-use changes affecting river sediment and brown trout in alpine countries-a review. Environ. Sci. Pollut. Res. 16 (2009), 232–242, 10.1007/s11356-008-0075-3.
Singh, S.N., Kumari, B., Mishra, S., 2012. Microbial Degradation of Alkanes, in: Microbial Degradation of Xenobiotics. pp. 439–469. 10.1007/978-3-642-23789-8_17.
Sirjani, E., Mahmoodabadi, M., Cerdà, A., Sediment transport mechanisms and selective removal of soil particles under unsteady-state conditions in a sheet erosion system. Int. J. Sediment Res. 37 (2022), 151–161, 10.1016/j.ijsrc.2021.09.006.
Smeaton, C., Cui, X., Bianchi, T.S., Cage, A.G., Howe, J.A., Austin, W.E.N., The evolution of a coastal carbon store over the last millennium. Quat. Sci. Rev., 266, 2021, 107081, 10.1016/j.quascirev.2021.107081.
Smith, H.G., Karam, D.S., Lennard, A.T., Evaluating tracer selection for catchment sediment fingerprinting. J. Soils Sediments 18 (2018), 3005–3019, 10.1007/s11368-018-1990-7.
Smith, A.A., Tetzlaff, D., Soulsby, C., On the use of storage selection functions to assess time-variant travel times in lakes. Water Resour. Res. 54 (2018), 5163–5185, 10.1029/2017WR021242.
Stenfert Kroese, J., Batista, P.V.G., Jacobs, S.R., Breuer, L., Quinton, J.N., Rufino, M.C., Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci. Rep., 10, 2020, 14827, 10.1038/s41598-020-71924-9.
Stock, B.C., Semmens, B.X., 2016. MixSIAR GUI User Manual. Version 3.1. 10.5281/zenodo.1209993.
Stout, S.A., Leaf wax n-alkanes in leaves, litter, and surface soil in a low diversity, temperate deciduous angiosperm forest, Central Missouri, USA. Chem. Ecol., 810–826, 2020, 10.1080/02757540.2020.1789118.
Swales, A., Gibbs, M.M., Transition in the isotopic signatures of fatty-acid soil biomarkers under changing land use: insights from a multi-decadal chronosequence. Sci. Total Environ., 722, 2020, 137850, 10.1016/j.scitotenv.2020.137850.
Tekaya, M., Dahmen, S., Ben Mansour, M., Ferhout, H., Chehab, H., Hammami, M., Attia, F., Mechri, B., Foliar application of fertilizers and biostimulant has a strong impact on the olive (Olea europaea) rhizosphere microbial community profile and the abundance of arbuscular mycorrhizal fungi. Rhizosphere, 19, 2021, 100402, 10.1016/j.rhisph.2021.100402.
Thornton, B., Zhang, Z., Mayes, R.W., Högberg, M.N., Midwood, A.J., Can gas chromatography combustion isotope ratio mass spectrometry be used to quantify organic compound abundance?. Rapid Commun. Mass Spectrom. 25 (2011), 2433–2438, 10.1002/rcm.5148.
Torres, T., Ortiz, J.E., Martín-Sánchez, D., Arribas, I., Moreno, L., Ballesteros, B., Blázquez, A.N.A., Domínguez, J.A., Estrella, T.R., The long pleistocene record from the pego-oliva marshland (Alicante-Valencia, Spain). Geol. Soc. Spec. Publ. 388 (2014), 429–452, 10.1144/SP388.2.
Upadhayay, H.R., Bodé, S., Griepentrog, M., Huygens, D., Bajracharya, R.M., Blake, W.H., Dercon, G., Mabit, L., Gibbs, M., Semmens, B.X., Stock, B.C., Cornelis, W., Boeckx, P., Methodological perspectives on the application of compound-specific stable isotope fingerprinting for sediment source apportionment. J. Soils Sediments 17 (2017), 1537–1553, 10.1007/s11368-017-1706-4.
Upadhayay, H.R., Bodé, S., Griepentrog, M., Bajracharya, R.M., Blake, W., Cornelis, W., Boeckx, P., Isotope mixing models require individual isotopic tracer content for correct quantification of sediment source contributions. Hydrol. Process. 32 (2018), 981–989, 10.1002/hyp.11467.
Walling, D.E., Owens, P.N., Leeks, G.J.L., Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK. Hydrol. Process. 13 (1999), 955–975, 10.1002/(SICI)1099-1085(199905)13:7<955::AID-HYP784>3.0.CO;2-G.
Wang, X., Huang, X., Sachse, D., Hu, Y., Xue, J., Meyers, P.A., Comparisons of lipid molecular and carbon isotopic compositions in two particle-size fractions from surface peat and their implications for lipid preservation. Environ. Earth Sci., 75, 2016, 10.1007/s12665-016-5960-3.
Wang, X., Blake, W.H., Taylor, A., Kitch, J., Millward, G., Evaluating the effectiveness of soil conservation at the basin scale using floodplain sedimentary archives. Sci. Total Environ., 792, 2021, 148414, 10.1016/j.scitotenv.2021.148414.
Wang, Y., Yang, H., Zhang, J., Xu, M., Wu, C., Biomarker and stable carbon isotopic signatures for 100–200year sediment record in the Chaihe catchment in southwest China. Sci. Total Environ. 502 (2015), 266–275, 10.1016/j.scitotenv.2014.09.017.
Wiltshire, C., Glendell, M., Waine, T.W., Grabowski, R.C., Meersmans, J., Assessing the source and delivery processes of organic carbon within a mixed land use catchment using a combined n-alkane and carbon loss modelling approach. J. Soils Sediments, 2022, 10.1007/s11368-022-03197-w.
Wischmeier, W., Smith, D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agricultural Handbook No. 537.
Xue, P.P., Carrillo, Y., Pino, V., Minasny, B., McBratney, A.B., Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8 (2018), 1–11, 10.1038/s41598-018-30005-8.
Xue, Y., Chen, L., Zhao, Y., Feng, Q., Li, C., Wei, Y., Shift of soil fungal communities under afforestation in Nanliu River Basin, southwest China. J. Environ. Manage., 302, 2022, 114130, 10.1016/j.jenvman.2021.114130.
Yan, C., Zhang, Y., Zheng, M., Zhang, Y., Liu, M., Yang, T., Meyers, P.A., Huang, X., Effects of redox conditions and temperature on the degradation of Sphagnumn-alkanes. Chem. Geol., 561, 2021, 119927, 10.1016/j.chemgeo.2020.119927.
Zaitlin, B., Watson, S.B., Dixon, J., Steel, D., Actinomycetes in the Elbow River Basin, Alberta, Canada. Water Qual. Res. J. Canada 38 (2003), 115–125, 10.2166/wqrj.2003.007.
Zech, M., Buggle, B., Leiber, K., Marković, S., Glaser, B., Hambach, U., Huwe, B., Stevens, T., Sümegi, P., Wiesenberg, G., Zöller, L., Reconstructing Quaternary vegetation history in the Carpathian Basin, SE-Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. Quat. Sci. J. 58 (2009), 148–155, 10.3285/eg.58.2.03.
Zech, M., Pedentchouk, N., Buggle, B., Leiber, K., Kalbitz, K., Marković, S.B., Glaser, B., Effect of leaf litter degradation and seasonality on D/H isotope ratios of n-alkane biomarkers. Geochim. Cosmochim. Acta 75 (2011), 4917–4928, 10.1016/j.gca.2011.06.006.
Zech, M., Krause, T., Meszner, S., Faust, D., Incorrect when uncorrected: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences - A case study from the Saxonian loess region, Germany. Quat. Int. 296 (2013), 108–116, 10.1016/j.quaint.2012.01.023.
Zhang, Y., Collins, A.L., McMillan, S., Dixon, E.R., Cancer-Berroya, E., Poiret, C., Stringfellow, A., Fingerprinting source contributions to bed sediment-associated organic matter in the headwater subcatchments of the River Itchen SAC, Hampshire, UK. River Res. Appl. 33 (2017), 1515–1526, 10.1002/rra.3172.
Zhang, Q., Liang, G., Zhou, W., Sun, J., Wang, X., He, P., Fatty-acid profiles and enzyme activities in soil particle-size fractions under long-term fertilization. Soil Sci. Soc. Am. J. 80 (2016), 97–111, 10.2136/sssaj2015.07.0255.
Zhang, X., Gu, Q., Long, X.E., Li, Z.L., Liu, D.X., Ye, D.H., He, C.Q., Liu, X.Y., Väänänen, K., Chen, X.P., Anthropogenic activities drive the microbial community and its function in urban river sediment. J. Soils Sediments 16 (2016), 716–725, 10.1007/s11368-015-1246-8.