modeling; optics; sea ice; Oceanography; Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science
Abstract :
[en] The intensity and spectrum of light under Arctic sea ice, key to the energy budget and primary productivity of the Arctic Ocean, are tedious to observe. Earth System Models (ESMs) are instrumental in understanding the large-scale properties and impacts of under-ice light. To date, however, ESM parameterizations of radiative transfer have been evaluated with a few observations only. From observational programs conducted over the past decade at four locations in the Northern Hemisphere sea ice zone, 349 observational records of under-ice light and coincident environmental characteristics were compiled. This data set was used to evaluate seven ESM parameterizations. Snow depth, melt pond presence and, to some extent, ice thickness explain the observed variance in light intensity, in agreement with previous work. The effects of Chlorophyll-a are also detected, with rather low intensity. The spectral distribution of under-ice light largely differs from typical open ocean spectra but weakly varies among the 349 records except for a weak effect of snow depth on the blue light contribution. Most parameterizations considered reproduce variations in under-ice light intensity. Large errors remain for individual records, on average by a factor of ∼3, however. Skill largely improves if more predictors are considered (snow and ponds in particular). Residual errors are attributed to missing physics in the parametrizations, inconsistencies in the model-observation comparison protocol, and measurement errors. We provide recommendations to improve the representation of light under sea ice in the ice-ocean model NEMO, which may also apply to other ESMs and help improve next-generation ESMs.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lebrun, Marion ; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France ; Takuvik International Research Laboratory, Université Laval and CNRS, Université Laval, Quebec City, Canada
Vancoppenolle, Martin ; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Madec, Gurvan; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Babin, Marcel ; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Becu, Guislain; Takuvik International Research Laboratory, Université Laval and CNRS, Université Laval, Quebec City, Canada
Lourenço, Antonio; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Nomura, Daiki ; Field Science Center for Northern Biosphere, Hokkaido University, Hakodate, Japan ; Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan ; Arctic Research Center, Hokkaido University, Sapporo, Japan
Vivier, Frederic; Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, France
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Language :
English
Title :
Light Under Arctic Sea Ice in Observations and Earth System Models
We thank all the scientists involved in the SLOPE 2019 campaign for their warm welcome at Saroma‐ko lagoon as well as for their contribution to the data collection and processing. We thank all contributors to the GreenEdge project fieldwork, data collection, data provision and support, Marie‐Hélène Forget, Joannie Ferland, Flavienne Bruyant, Simon Lambert‐Girard, Philippe Massicotte, Christian Haas and the Amundsen Science Data team. We also thank SUBICE contributors for fieldwork and data collection, in particular Gert van Dijken and Donald Perovich. We also thank both anonymous reviewers as well as Camille Lique, Roland Séférian and David Salas y Mélia for their precious comments. M.L. was supported by a CNES (Centre National d'Etudes Spatiales) Postdoctoral Fellowship. This work was supported by the Japan Society for the Promotion of Science (17H04715, 18H03745, 18KK0292, and 20H04345). This paper is a contribution to the SCOR Working Group 152–Measuring Essential Climate Variables in Sea Ice (ECV‐Ice) and Biogeochemical Exchange Processes at Sea‐Ice Interfaces (BEPSII). The GreenEdge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), ArcticNet, CERC on Remote sensing of Canada's new Arctic frontier, CNES (project #131425), French Arctic Initiative, Fondation Total, CSA, LEFE, and IPEV (project #1164). The GreenEdge project would not have been possible without the support of the Hamlet of Qikiqtarjuaq and the members of the community as well as the Inuksuit School and its Principal, Jacqueline Arsenault. The GreenEdge project was conducted under the scientific coordination of the Canada Excellence Research Chair on Remote sensing of Canada's new Arctic frontier, the CNRS & Université Laval Takuvik Joint International Laboratory (UMI3376). It was also conducted using the Canadian research icebreaker CCGS Amundsen with the support of the Amundsen Science program funded by the Canada Foundation for Innovation (CFI) Major Science Initiatives (MSI) Fund. We wish to thank officers and crew of CCGS Amundsen. The field campaign was successful thanks to the contribution of C. Aubry, G. Bécu, M. Benoît‐Gagné, F. Bruyant, D. Christiansen‐Stowe, E. Devred, J. Ferland, M.‐H. Forget, J. Lagunas, C. Lalande, S. Lambert‐Girard, J. Larivière, A. LeBaron, C. Marty, E. Rehm, J. Sansoulet, A. Wells from Takuvik laboratory, J. Bourdon, C. Marec and M. Picheral from CNRS, C.J. Mundy and V. Galindo from University of Manitoba & F. Pinczon du Sel and E. Brossier from Vagabond. Michel Gosselin, Québec‐Océan, the CCGS and the Polar Continental Shelf Program have also contributed in terms of polar logistics and scientific equipment. The SUBICE project was supported by the NSF Office of Polar Programs (PLR‐1304563). The OPTIMISM‐bio project was supported by the French Polar Institute (IPEV program 1015) and CNRS (MI). Stefano Poli, Marie Kotovitch and Fanny Vanderlinden are gratefully acknowledged. Funding support from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824084 (IS‐ENES3) is acknowledged. AmundsenWe thank all the scientists involved in the SLOPE 2019 campaign for their warm welcome at Saroma-ko lagoon as well as for their contribution to the data collection and processing. We thank all contributors to the GreenEdge project fieldwork, data collection, data provision and support, Marie-Hélène Forget, Joannie Ferland, Flavienne Bruyant, Simon Lambert-Girard, Philippe Massicotte, Christian Haas and the Amundsen Science Data team. We also thank SUBICE contributors for fieldwork and data collection, in particular Gert van Dijken and Donald Perovich. We also thank both anonymous reviewers as well as Camille Lique, Roland Séférian and David Salas y Mélia for their precious comments. M.L. was supported by a CNES (Centre National d'Etudes Spatiales) Postdoctoral Fellowship. This work was supported by the Japan Society for the Promotion of Science (17H04715, 18H03745, 18KK0292, and 20H04345). This paper is a contribution to the SCOR Working Group 152–Measuring Essential Climate Variables in Sea Ice (ECV-Ice) and Biogeochemical Exchange Processes at Sea-Ice Interfaces (BEPSII). The GreenEdge project is funded by the following French and Canadian programs and agencies: ANR (Contract #111112), ArcticNet, CERC on Remote sensing of Canada's new Arctic frontier, CNES (project #131425), French Arctic Initiative, Fondation Total, CSA, LEFE, and IPEV (project #1164). The GreenEdge project would not have been possible without the support of the Hamlet of Qikiqtarjuaq and the members of the community as well as the Inuksuit School and its Principal, Jacqueline Arsenault. The GreenEdge project was conducted under the scientific coordination of the Canada Excellence Research Chair on Remote sensing of Canada's new Arctic frontier, the CNRS & Université Laval Takuvik Joint International Laboratory (UMI3376). It was also conducted using the Canadian research icebreaker CCGS Amundsen with the support of the Amundsen Science program funded by the Canada Foundation for Innovation (CFI) Major Science Initiatives (MSI) Fund. We wish to thank officers and crew of CCGS Amundsen. The field campaign was successful thanks to the contribution of C. Aubry, G. Bécu, M. Benoît-Gagné, F. Bruyant, D. Christiansen-Stowe, E. Devred, J. Ferland, M.-H. Forget, J. Lagunas, C. Lalande, S. Lambert-Girard, J. Larivière, A. LeBaron, C. Marty, E. Rehm, J. Sansoulet, A. Wells from Takuvik laboratory, J. Bourdon, C. Marec and M. Picheral from CNRS, C.J. Mundy and V. Galindo from University of Manitoba & F. Pinczon du Sel and E. Brossier from Vagabond. Michel Gosselin, Québec-Océan, the CCGS Amundsen and the Polar Continental Shelf Program have also contributed in terms of polar logistics and scientific equipment. The SUBICE project was supported by the NSF Office of Polar Programs (PLR-1304563). The OPTIMISM-bio project was supported by the French Polar Institute (IPEV program 1015) and CNRS (MI). Stefano Poli, Marie Kotovitch and Fanny Vanderlinden are gratefully acknowledged. Funding support from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824084 (IS-ENES3) is acknowledged.
Abraham, C., Steiner, N., Monahan, A., & Michel, C. (2015). Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice. Journal of Geophysical Research: Oceans, 5597–5614. https://doi.org/10.1002/2015JC010741@10.1002/(ISSN)2169-9291
Anhaus, P., Katlein, C., Nicolaus, M., Arndt, S., Jutila, A., & Haas, C. (2021). Snow depth retrieval on arctic sea ice using under-ice hyperspectral radiation measurements. Frontiers of Earth Science, 9. https://doi.org/10.3389/feart.2021.711306
Ardyna, M., & Arrigo, K. R. (2020). Phytoplankton dynamics in a changing Arctic Ocean. Nature Climate Change, 10(10), 892–903. https://doi.org/10.1038/s41558-020-0905-y
Ardyna, M., Mundy, C. J., Mayot, N., Matthes, L. C., Oziel, L., Horvat, C., et al. (2020). Under-ice phytoplankton blooms: Shedding light on the “invisible” part of Arctic primary production. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.608032
Arndt, S., Meiners, K. M., Ricker, R., Krumpen, T., Katlein, C., & Nicolaus, M. (2017). Influence of snow depth and surface flooding on light transmission through Antarctic pack ice. Journal of Geophysical Research: Oceans, 122(3), 2108–2119. https://doi.org/10.1002/2016JC012325
Arrigo, K. (2014). SUBICE—“Study of under-ice blooms in the Chukchi ecosystem”, cruise report from HLY1401. Stanford University. Retrieved from http://icefloe.net/docs/hly1401_cruise_report.pdf
Arrigo, K. R., Sullivan, C. W., & Kremer, J. N. (1991). A bio-optical model of Antarctic sea ice. Journal of Geophysical Research, 96(C6), 10581–10592. https://doi.org/10.1029/91JC00455
Arrigo, K. R., & van Dijken, G. L. (2015). Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002
Arst, H., Erm, A., Leppäranta, M., & Reinart, A. (2006). Radiative characteristics of ice-covered fresh- and brackish-water bodies. Proceedings of the Estonian Academy of Sciences: Geology, 55(1), 3. https://doi.org/10.3176/geol.2006.1.01
Assmy, P., Fernández-Méndez, M., Duarte, P., Meyer, A., Randelhoff, A., Mundy, C. J., et al. (2017). Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Scientific Reports, 7(1), srep40850. https://doi.org/10.1038/srep40850
Berge, J., Renaud, P. E., Darnis, G., Cottier, F., Last, K., Gabrielsen, T. M., et al. (2015). In the dark: A review of ecosystem processes during the Arctic polar night. Progress in Oceanography, 139, 258–271. https://doi.org/10.1016/j.pocean.2015.08.005
Boles, E., Provost, C., Garçon, V., Bertosio, C., Athanase, M., Koenig, Z., & Sennéchael, N. (2020). Under-ice phytoplankton blooms in the central Arctic Ocean: Insights from the first biogeochemical IAOOS platform drift in 2017. Journal of Geophysical Research: Oceans, 125(3), e2019JC015608. https://doi.org/10.1029/2019JC015608
Brandt, R. E., Warren, S. G., Worby, A. P., & Grenfell, T. C. (2005). Surface Albedo of the Antarctic Sea Ice zone. Journal of Climate, 18(17), 3606–3622. https://doi.org/10.1175/JCLI3489.1
Briegleb, P., Bitz, M., Hunke, C., Lipscomb, H., Holland, M., Schramm, L., & Moritz, E. (2004). Scientific description of the sea ice component in the Community Climate System Model, version 3. https://doi.org/10.5065/D6HH6H1P
Briegleb, P., & Light, B. (2007). A delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the community climate system model. https://doi.org/10.5065/D6B27S71
Castellani, G., Losch, M., Lange, B. A., & Flores, H. (2017). Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology. Journal of Geophysical Research: Oceans, 122(9), 7466–7487. https://doi.org/10.1002/2017JC012828
Clement Kinney, J., Maslowski, W., Osinski, R., Jin, M., Frants, M., Jeffery, N., & Lee, Y. J. (2020). Hidden production: On the importance of pelagic phytoplankton blooms beneath Arctic sea ice. Journal of Geophysical Research: Oceans, 125(9), e2020JC016211. https://doi.org/10.1029/2020JC016211
Ehn, J. K., Mundy, C. J., Barber, D. G., Hop, H., Rossnagel, A., & Stewart, J. (2011). Impact of horizontal spreading on light propagation in melt pond covered seasonal sea ice in the Canadian Arctic. Journal of Geophysical Research, 116(C9), C00G02. https://doi.org/10.1029/2010JC006908
Fichefet, T., & Morales Maqueda, M. A. (1997). Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. Journal of Geophysical Research, 102(C6), 12609–12646. https://doi.org/10.1029/97JC00480
Frey, K. E., Perovich, D. K., & Light, B. (2011). The spatial distribution of solar radiation under a melting Arctic sea ice cover. Geophysical Research Letters, 38(22), L22501. https://doi.org/10.1029/2011GL049421
Frouin, R., & Pinker, R. T. (1995). Estimating photosynthetically Active radiation (PAR) at the Earth's surface from satellite observations. Remote Sensing of Environment, 51(1), 98–107. https://doi.org/10.1016/0034-4257(94)00068-X
Gao, Y., Zhang, Y., Chai, F., Granskog, M. A., Duarte, P., & Assmy, P. (2022). An improved radiative forcing scheme for better representation of Arctic under-ice blooms. Ocean Modelling, 177, 102075. https://doi.org/10.1016/j.ocemod.2022.102075
Goldenson, N., Doherty, S. J., Bitz, C. M., Holland, M. M., Light, B., & Conley, A. J. (2012). Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM. Atmospheric Chemistry and Physics, 12(17), 7903–7920. https://doi.org/10.5194/acp-12-7903-2012
Grenfell, T. C., & Maykut, G. A. (1977). The optical properties of ice and snow in the Arctic basin *. Journal of Glaciology, 18(80), 445–463. https://doi.org/10.3189/S0022143000021122
Grenfell, T. C., & Perovich, D. K. (2004). Seasonal and spatial evolution of albedo in a snow-ice-land-ocean environment. Journal of Geophysical Research, 109(C1), C01001. https://doi.org/10.1029/2003JC001866
Hill, V. J., Light, B., Steele, M., & Zimmerman, R. C. (2018). Light availability and phytoplankton growth beneath Arctic sea ice: Integrating observations and modeling. Journal of Geophysical Research: Oceans, 123(5), 3651–3667. https://doi.org/10.1029/2017JC013617
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. H. (1965). Fluorometric determination of Chlorophyll. ICES Journal of Marine Science, 30(1), 3–15. https://doi.org/10.1093/icesjms/30.1.3
Horvat, C., Flocco, D., Rees Jones, D. W., Roach, L., & Golden, K. M. (2020). The effect of melt pond geometry on the distribution of solar energy under first-year sea ice. Geophysical Research Letters, 47(4), e2019GL085956. https://doi.org/10.1029/2019GL085956
Horvat, C., Jones, D. R., Iams, S., Schroeder, D., Flocco, D., & Feltham, D. (2017). The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Science Advances, 3(3), e1601191. https://doi.org/10.1126/sciadv.1601191
Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F., et al. (2022). CICE-Consortium/Icepack: Icepack 1.3.2. Zenodo. https://doi.org/10.5281/zenodo.6967671
Järvinen, O., & Leppäranta, M. (2011). Transmission of solar radiation through the snow cover on floating ice. Journal of Glaciology, 57(205), 861–870. https://doi.org/10.3189/002214311798043843
Jin, Z., Ottaviani, M., & Sikand, M. (2022). Validation of a fully-coupled radiative transfer model for sea ice with albedo and transmittance measurements. The Cryosphere Discussions, 1–24. https://doi.org/10.5194/tc-2022-106
Joseph, J. H., Wiscombe, W. J., & Weinman, J. A. (1976). The delta-eddington approximation for radiative flux transfer. Journal of the Atmospheric Sciences, 33(12), 2452–2459. https://doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
Kari, E., Jutila, A., Friedrichs, A., Leppäranta, M., & Kratzer, S. (2020). Measurements of light transfer through drift ice and landfast ice in the northern Baltic Sea. Oceanologia, 62(3), 347–363. https://doi.org/10.1016/j.oceano.2020.04.001
Katlein, C., Arndt, S., Belter, H. J., Castellani, G., & Nicolaus, M. (2019). Seasonal Evolution of light transmission distributions through Arctic sea ice. Journal of Geophysical Research: Oceans, 0(0), 5418–5435. https://doi.org/10.1029/2018JC014833
Katlein, C., Arndt, S., Nicolaus, M., Perovich, D. K., Jakuba, M. V., Suman, S., et al. (2015). Influence of ice thickness and surface properties on light transmission through Arctic sea ice. Journal of Geophysical Research: Oceans, 120(9), 5932–5944. https://doi.org/10.1002/2015JC010914
Katlein, C., Langelier, J.-P., Ouellet, A., Lévesque-Desrosiers, F., Hisette, Q., Lange, B. A., et al. (2021). The three-dimensional light field within sea ice ridges. Geophysical Research Letters, 48(11), e2021GL093207. https://doi.org/10.1029/2021GL093207
Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., et al. (2021). An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models. The Cryosphere, 15(2), 951–982. https://doi.org/10.5194/tc-15-951-2021
Lecomte, O., Fichefet, T., Flocco, D., Schroeder, D., & Vancoppenolle, M. (2015). Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean–sea ice model. Ocean Modelling, 87, 67–80. https://doi.org/10.1016/j.ocemod.2014.12.003
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., André, J.-M., & Madec, G. (2007). Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Climate Dynamics, 28(5), 503–516. https://doi.org/10.1007/s00382-006-0200-2
Lewis, K. M., van Dijken, G. L., & Arrigo, K. R. (2020). Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science, 369(6500), 198–202. https://doi.org/10.1126/science.aay8380
Light, B., Eicken, H., Maykut, G. A., & Grenfell, T. C. (1998). The effect of included participates on the spectral albedo of sea ice. Journal of Geophysical Research, 103(C12), 27739–27752. https://doi.org/10.1029/98JC02587
Light, B., Grenfell, T. C., & Perovich, D. K. (2008). Transmission and absorption of solar radiation by Arctic sea ice during the melt season. Journal of Geophysical Research, 113(C3), C03023. https://doi.org/10.1029/2006JC003977
Light, B., Maykut, G. A., & Grenfell, T. C. (2004). A temperature-dependent, structural-optical model of first-year sea ice. Journal of Geophysical Research, 109(C6), C06013. https://doi.org/10.1029/2003JC002164
Light, B., Smith, M. M., Perovich, D. K., Webster, M. A., Holland, M. M., Linhardt, F., et al. (2022). Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift. Elementa: Science of the Anthropocene, 10(1), 000103. https://doi.org/10.1525/elementa.2021.000103
Lorenzen, C. J. (1967). Determination of Chlorophyll and pheo-pigments: Spectrophotometric Equations1. Limnology & Oceanography, 12(2), 343–346. https://doi.org/10.4319/lo.1967.12.2.0343
Madec, G., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., et al. (2022). NEMO ocean engine. https://doi.org/10.5281/zenodo.6334656
Massicotte, P., Amiraux, R., Amyot, M.-P., Archambault, P., Ardyna, M., Arnaud, L., et al. (2020). Green edge ice camp campaigns: Understanding the processes controlling the under-ice Arctic phytoplankton spring bloom. Earth System Science Data, 12(1), 151–176. https://doi.org/10.5194/essd-12-151-2020
Massicotte, P., Bécu, G., Lambert-Girard, S., Leymarie, E., & Babin, M. (2018). Estimating underwater light regime under spatially heterogeneous sea ice in the Arctic. Applied Sciences, 8(12), 2693. https://doi.org/10.3390/app8122693
Matthes, L. C., Mundy, C. J., L.-Girard, S., Babin, M., Verin, G., & Ehn, J. K. (2020). Spatial heterogeneity as a key variable influencing spring-summer progression in UVR and PAR transmission through Arctic Sea Ice. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00183
Maykut, G. A., & Untersteiner, N. (1971). Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6), 1550–1575. https://doi.org/10.1029/JC076i006p01550
Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S., Thomas, D. N., Tison, J.-L., et al. (2012). Chlorophyll a in Antarctic sea ice from historical ice core data. Geophysical Research Letters, 39(21), L21602. https://doi.org/10.1029/2012GL053478
Mobley, C. (2022). The oceanic optics book. https://doi.org/10.25607/OBP-1710
Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). Journal of Geophysical Research, 93(C9), 10749–10768. https://doi.org/10.1029/JC093iC09p10749
Morrow, J. H., Booth, C., Lind, R. N., & Hooker, S. B. (2010). The compact-optical profiling system (C-OPS). National Aeronautics and Space Administration Technical Memorandum, 42–50.
Mundy, C. J., Ehn, J. K., Barber, D. G., & Michel, C. (2007). Influence of snow cover and algae on the spectral dependence of transmitted irradiance through Arctic landfast first-year sea ice. Journal of Geophysical Research, 112(C3), C03007. https://doi.org/10.1029/2006JC003683
Nomura, D., Wongpan, P., Toyota, T., Tanikawa, T., Kawaguchi, Y., Ono, T., et al. (2020). Saroma-ko lagoon observations for sea ice physico-chemistry and ecosystems 2019 (SLOPE2019). Bulletin of Glaciological Research, 38(0), 1–12. https://doi.org/10.5331/bgr.19R02
Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., et al. (2016). The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): Understanding sea ice through climate-model simulations. Geoscientific Model Development, 9(9), 3427–3446. https://doi.org/10.5194/gmd-9-3427-2016
Oziel, L., Massicotte, P., Randelhoff, A., Ferland, J., Vladoiu, A., Lacour, L., et al. (2019). Environmental factors influencing the seasonal dynamics of spring algal blooms in and beneath sea ice in western Baffin Bay. Elementa: Science of the Anthropocene, 7(1), 34. https://doi.org/10.1525/elementa.372
Pedersen, C. A., Roeckner, E., Lüthje, M., & Winther, J.-G. (2009). A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model. Journal of Geophysical Research, 114(D8), D08101. https://doi.org/10.1029/2008JD010440
Peixoto, J. P., & Oort, A. H. (1992). Physics of climate. American Institute of Physics.
Perovich, D. K. (1996). The optical properties of sea ice. CRREL Monograph, 96–1, 25.
Perovich, D. K. (2007). Light reflection and transmission by a temperate snow cover. Journal of Glaciology, 53(181), 201–210. https://doi.org/10.3189/172756507782202919
Perovich, D. K. (2017). Sea ice and sunlight. In Sea ice (pp. 110–137). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118778371.ch4
Perovich, D. K., Tucker, W. B., III., & Ligett, K. A. (2002). Aerial observations of the evolution of ice surface conditions during summer. Journal of Geophysical Research, 107(C10), 8048. https://doi.org/10.1029/2000JC000449
Popova, E. E., Yool, A., Coward, A. C., Dupont, F., Deal, C., Elliott, S., et al. (2012). What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry. Journal of Geophysical Research, 117(C8), C00D12. https://doi.org/10.1029/2011JC007112
Post, E. (2017). Implications of earlier sea ice melt for phenological cascades in arctic marine food webs. Food Webs, 13, 60–66. https://doi.org/10.1016/j.fooweb.2016.11.002
Randelhoff, A., Oziel, L., Massicotte, P., Bécu, G., Galí, M., Lacour, L., et al. (2019). The evolution of light and vertical mixing across a phytoplankton ice-edge bloom. Elementa: Science of the Anthropocene, 7(1), 20. https://doi.org/10.1525/elementa.357
Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W., Notz, D., et al. (2020). Antarctic Sea Ice Area in CMIP6. Geophysical Research Letters, 47(9), e2019GL086729. https://doi.org/10.1029/2019GL086729
Selz, V., Laney, S., Arnsten, A. E., Lewis, K. M., Lowry, K. E., Joy-Warren, H. L., et al. (2018). Ice algal communities in the Chukchi and Beaufort Seas in spring and early summer: Composition, distribution, and coupling with phytoplankton assemblages. Limnology & Oceanography, 63(3), 1109–1133. https://doi.org/10.1002/lno.10757
Shine, K. P., & Henderson-Sellers, A. (1985). The sensitivity of a thermodynamic sea ice model to changes in surface albedo parameterization. Journal of Geophysical Research, 90(D1), 2243–2250. https://doi.org/10.1029/JD090iD01p02243
SIMIP Community (2020). Arctic sea ice in CMIP6. Geophysical Research Letters, 47, e2019GL086749. https://doi-org.insu.bib.cnrs.fr/10.1029/2019GL086749
Smith, R., Anning, J., Clément, P., & Cota, G. F. (1988). Abundance and production of ice algae in Resolute Passage. Canadian Arctic, 48, 251–263. https://doi.org/10.3354/meps048251
Stroeve, J., Vancoppenolle, M., Veyssiere, G., Lebrun, M., Castellani, G., Babin, M., et al. (2021). A multi-sensor and modeling Approach for mapping light under Sea Ice during the ice-growth season. Frontiers in Marine Science, 7, 1253. https://doi.org/10.3389/fmars.2020.592337
Vancoppenolle, M., Bopp, L., Madec, G., Dunne, J., Ilyina, T., Halloran, P. R., & Steiner, N. (2013). Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles, 27(3), 605–619. https://doi.org/10.1002/gbc.20055
Vancoppenolle, M., Fichefet, T., Goosse, H., Bouillon, S., Madec, G., & Maqueda, M. A. M. (2009). Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling, 27(1), 33–53. https://doi.org/10.1016/j.ocemod.2008.10.005
Vancoppenolle, M., & Tedesco, L. (2017). Numerical models of sea ice biogeochemistry. In D. N. Thomas (Ed.), Sea Ice (pp. 492–515). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118778371.ch20
Vérin, G., Domine, F., Babin, M., Picard, G., & Arnaud, L. (2022). Metamorphism of snow on Arctic sea ice during the melt season: Impact on spectral albedo and radiative fluxes through snow. The Cryosphere, 16(9), 3431–3449. https://doi.org/10.5194/tc-16-3431-2022
Veyssière, G., Castellani, G., Wilkinson, J., Karcher, M., Hayward, A., Stroeve, J. C., et al. (2022). Under-ice light field in the Western Arctic Ocean during late summer. Frontiers of Earth Science, 9. https://doi.org/10.3389/feart.2021.643737
Vivier, F., Hutchings, J. K., Kawaguchi, Y., Kikuchi, T., Morison, J. H., Loureno, A., & Noguchi, T. (2016). Sea ice melt onset associated with lead opening during the spring/summer transition near the North Pole. Journal of Geophysical ResearchOcean, 121(4), 2499–2522. https://doi.org/10.1002/2015JC011588
Warren, S. G. (1982). Optical properties of snow. Reviews of Geophysics, 20(1), 67–89. https://doi.org/10.1029/RG020i001p00067
Warren, S. G. (2019). Optical properties of ice and snow. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 377(2146), 20180161. https://doi.org/10.1098/rsta.2018.0161
Wongpan, P., Meiners, K. M., Langhorne, P. J., Heil, P., Smith, I. J., Leonard, G. H., et al. (2018). Estimation of Antarctic land-fast Sea Ice Algal biomass and snow thickness from under-ice radiance spectra in two Contrasting Areas. Journal of Geophysical Research: Oceans, 123(3), 1907–1923. https://doi.org/10.1002/2017JC013711
Wongpan, P., Nomura, D., Toyota, T., Tanikawa, T., Meiners, K. M., Ishino, T., et al. (2020). Using under-ice hyperspectral transmittance to determine land-fast sea-ice algal biomass in Saroma-ko Lagoon, Hokkaido, Japan. Annals of Glaciology, 61(83), 454–463. https://doi.org/10.1017/aog.2020.69
Yentsch, C. S., & Menzel, D. W. (1963). A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Research and Oceanographic Abstracts, 10(3), 221–231. https://doi.org/10.1016/0011-7471(63)90358-9
Yu, M., Lu, P., Cheng, B., Leppäranta, M., & Li, Z. (2022). Impact of microstructure on solar radiation transfer within sea ice during summer in the Arctic: A model sensitivity study. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.861994
Zhang, J., Ashjian, C., Campbell, R., Spitz, Y. H., Steele, M., & Hill, V. (2015). The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 118, 122–135. https://doi.org/10.1016/j.dsr2.2015.02.008