Fe:C ratio; Ice algae; Phytoplankton; Sea ice; Uptake rates; Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences
Abstract :
[en] Melting sea ice is a seasonal source of iron (Fe) to the Southern Ocean (SO), where Fe levels in surface waters are otherwise generally too low to support phytoplankton growth. However, the effectiveness of sea-ice Fe fertilization in stimulating SO primary production is unknown since no data exist on Fe uptake by microorganisms in the sea-ice environment. This study reports a unique dataset on Fe uptake rates, Fe-to-carbon (C) uptake ratio (Fe uptake normalized to C uptake) and Fe:C uptake rate (Fe uptake normalized to biomass) by in situ microbial communities inhabiting sea ice and the underlying seawater. Radioisotopes 55Fe and 14C were used in short-term uptake experiments during the 32-day Ice Station POLarstern (ISPOL) time series to evaluate the contributions of small (0.8–10 µm) and large (> 10 µm) microbes to Fe uptake. Overall, results show that over 90% of Fe was bound to the outside of the cells. Intracellular Fe (Feintra) uptake rates reached up to 68, 194, and 203 pmol Fe L−1d− 1 in under-ice seawater, bottom ice, and top ice, respectively. Inorganic carbon uptake ranged between 0.03 and 3.2 µmol C L−1 d−1, with the lowest rate observed in under-ice seawater. Importantly, between the start and end of ISPOL, we observed a 30-fold increase in Feintra normalized to carbon biomass in bottom sea ice. This trend was likely due to changes in the microbial community from a dominance of large diatoms at the start of the survey to small diatoms later in the season. As the Antarctic icescape and associated ecosystems are changing, this dataset will help inform the parameterisation of sea-ice biogeochemical and ecological models in ice-covered regions.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Lannuzel, Delphine ; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia ; Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
Fourquez, Marion ; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UMR 110, Marseille, France
de Jong, Jeroen ; Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium
Tison, Jean-Louis ; PROPICE Unit, Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Schoemann, Véronique; Laboratoire G-Time, Université Libre de Bruxelles, Brussels, Belgium ; Ecology of Aquatic Systems, Faculty of Sciences, Université Libre de Bruxelles, Brussels, Belgium
Language :
English
Title :
First report on biological iron uptake in the Antarctic sea-ice environment
Publication date :
2023
Journal title :
Polar Biology
ISSN :
0722-4060
eISSN :
1432-2056
Publisher :
Springer Science and Business Media Deutschland GmbH
ARC - Australian Research Council ULiège. ARC - Université de Liège. Actions de Recherche Concertées ACE CRC - Antarctic Climate and Ecosystems Cooperative Research Centre European Network of Excellence BELSPO - Belgian Science Policy Office F.R.S.-FNRS - Fonds de la Recherche Scientifique UTAS - University of Tasmania
Arrigo KR, Worthen DL, Lizotte MP et al (1997) Primary production in Antarctic sea ice. Science 276:394LP – 397. 10.1126/science.276.5311.394 DOI: 10.1126/science.276.5311.394
Arrigo KR, van Dijken GL (2003) Phytoplankton dynamics within 37 Antarctic coastal polynya systems. J Geophys Res 108:3271. 10.1029/2002JC001739 DOI: 10.1029/2002JC001739
Berges JA, Varela DE, Harrison PJ (2002) Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (bacillariophyceae). Mar Ecol Prog Ser 225:139–146. 10.3354/meps225139 DOI: 10.3354/meps225139
Blain S, Quéguiner B, Armand L et al (2007) Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature 446:1070–1074. 10.1038/nature05700 DOI: 10.1038/nature05700
Bowie AR, Maldonado MT, Frew RD et al (2001) The fate of added iron during a mesoscale fertilisation experiment in the Southern Ocean. Deep Sea Res Part II 48:2703–2743. 10.1016/S0967-0645(01)00015-7 DOI: 10.1016/S0967-0645(01)00015-7
Boyd PW, Watson AJ, Law CS et al (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702. 10.1038/35037500 DOI: 10.1038/35037500
Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol Oceanogr 36:1756–1771. 10.4319/lo.1991.36.8.1756 DOI: 10.4319/lo.1991.36.8.1756
Bruland KW, Rue EL, Smith GJ (2001) Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnol Oceanogr 46:1661–1674 DOI: 10.4319/lo.2001.46.7.1661
Buesseler KO (1998) The decoupling of production and particulate export in the surface ocean. Global Biogeochem Cycles 12:297–310. 10.1029/97GB03366 DOI: 10.1029/97GB03366
Croot PL, Johansson M (2000) Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis 12:565–576. 10.1002/(SICI)1521-4109(200005)12:8 DOI: 10.1002/(SICI)1521-4109(200005)12:8
Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanography Marine Biol Annual Rev 28:73–153
de Jong J, Schoemann V, Maricq N et al (2013) Iron in land-fast sea ice of McMurdo Sound derived from sediment resuspension and wind-blown dust attributes to primary productivity in the Ross Sea, Antarctica. Mar Chem 157:24–40. 10.1016/j.marchem.2013.07.001 DOI: 10.1016/j.marchem.2013.07.001
de Jong J, Stammerjohn S, Ackley S et al (2015) Sources and fluxes of dissolved iron in the Bellingshausen Sea (West Antarctica): the importance of sea ice, icebergs and the continental margin. Mar Chem 177:518–535. 10.1016/j.marchem.2015.08.004 DOI: 10.1016/j.marchem.2015.08.004
Delille B, Vancoppenolle M, Geilfus N-X et al (2014) Southern Ocean CO2 sink: the contribution of the sea-ice. J Geophysical Res: Oceans 119:6340–6355. 10.1002/2014JC009941 DOI: 10.1002/2014JC009941
Dumont I, Schoemann V, Lannuzel D et al (2009) Distribution and characterization of dissolved and particulate organic matter in Antarctic pack ice. Polar Biol 32:733–750. 10.1007/s00300-008-0577-y DOI: 10.1007/s00300-008-0577-y
Duprat LPAM, Bigg GR, Wilton DJ (2016) Enhanced Southern Ocean marine productivity due to fertilization by giant icebergs. Nat Geosci 9:219–221. 10.1038/ngeo2633 DOI: 10.1038/ngeo2633
Eicken H, Lange MA, Dieckmann GS (1991) Spatial variability of sea-ice properties. J Geophys Res 96:603–615
Ellwood MJ, Strzepek RF, Strutton PG et al (2020) Distinct iron cycling in a Southern Ocean eddy. Nat Commun 11:825. 10.1038/s41467-020-14464-0 DOI: 10.1038/s41467-020-14464-0
Ewert M, Deming J (2011) Selective retention in saline ice of extracellular polysaccharides produced by the cold-adapted marine bacterium Colwellia psychrerythraea strain 34H. Ann Glaciol 52(57):111–117. 10.3189/172756411795931868 DOI: 10.3189/172756411795931868
Fourquez M, Obernosterer I, Blain S (2012) A method for the use of the radiotracer 55Fe for microautoradiography and CARDFISH of natural bacterial communities. FEMS Microbiol Lett 337:132–139. 10.1111/1574-6968.12022 DOI: 10.1111/1574-6968.12022
Fourquez M, Obernosterer I, Davies DM et al (2015) Microbial iron uptake in the naturally fertilized waters in the vicinity of the Kerguelen Islands: phytoplankton–bacteria interactions. Biogeosciences 12:1893–1906. 10.5194/bg-12-1893-2015 DOI: 10.5194/bg-12-1893-2015
Fourquez M, Bressac M, Deppeler SL et al (2020) Microbial competition in the subpolar Southern Ocean: An Fe–C Co-limitation experiment. Front Mar Sci 6:76. 10.3389/fmars.2019.00776 DOI: 10.3389/fmars.2019.00776
Fourquez M, Strzepek RF, Ellwood MJ et al (2022) Phytoplankton responses to bacterially regenerated iron in a Southern Ocean eddy. Microorganisms 10(8):1655. 10.3390/microorganisms10081655 DOI: 10.3390/microorganisms10081655
Frew RD, Hutchins DA, Nodder S et al (2006) Particulate iron dynamics during FeCycle in subantarctic waters southeast of New Zealand. Global Biogeochem Cycles 20:GB1S93. 10.1029/2005GB002558 DOI: 10.1029/2005GB002558
Garrison D, Close A (1993) Winter ecology of the sea-ice biota in Weddell Sea pack ice. Mar Ecol Prog Ser 96:17–31. 10.3354/meps096017 DOI: 10.3354/meps096017
Genovese C, Grotti M, Pittaluga J et al (2018) Influence of organic complexation on dissolved iron distribution in East Antarctic pack ice. Mar Chem 203:28–37. 10.1016/j.marchem.2018.04.005 DOI: 10.1016/j.marchem.2018.04.005
Gerringa LJA, Alderkamp A, Laan P et al (2012) Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. Deep Sea Res Part I 71–76:16–31 DOI: 10.1016/j.dsr2.2012.03.007
Gradinger R, Ikavalko J (1998) Organism incorporation into newly forming Arctic sea-ice in the Greenland Sea. J Plankton Res 20:871–886 DOI: 10.1093/plankt/20.5.871
Harrison GI, Morel FMM (1986) Response of the Marine diatom Thalassiosira-Weissflogii to iron stress. Limnol Oceanogr 31:989–997 DOI: 10.4319/lo.1986.31.5.0989
Hassler CS, Schoemann V (2009) Discriminating between intra- and extracellular metals using chemical extractions: an update on the case of iron. Limnol Oceanogr Methods 7:479–489. 10.4319/lom.2009.7.479 DOI: 10.4319/lom.2009.7.479
Hassler CS, Schoemann V, Mancuso Nichols C et al (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci USA 108:1076–1081. 10.1073/pnas.1010963108 DOI: 10.1073/pnas.1010963108
Herraiz-Borreguero L, Lannuzel D, van der Merwe P et al (2016) Large flux of iron from the Amery Ice Shelf marine ice to Prydz Bay, East Antarctica. J Geophys Res: Oceans 121:6009–6020. 10.1002/2016JC011687 DOI: 10.1002/2016JC011687
Hillebrand H, Dűrselen C-D, Kirschtel D et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424 DOI: 10.1046/j.1529-8817.1999.3520403.x
Hopkinson BM, Seegers B, Hatta M et al (2013) Deep-Sea research II planktonic C: Fe ratios and carrying capacity in the southern drake passage. Deep Sea Res II 90:102–111 DOI: 10.1016/j.dsr2.2012.09.001
Hopwood M (2018) Iron from ice. Nat Geosci 11:462. 10.1038/s41561-018-0167-8 DOI: 10.1038/s41561-018-0167-8
Hudson R, Morel F (1989) Distinguishing between extra-and intracellular iron in marine phytoplankton. Limnol Oceanogr 34:1113–1120. 10.4319/lo.1989.34.6.1113 DOI: 10.4319/lo.1989.34.6.1113
Hudson RJM, Morel FMM (1990) lron transport in marine phytoplankton: kinetics of cellular and medium coordination reactions. Limnol Oceanogr 35:1002–1020. 10.4319/lo.1990.35.5.1002 DOI: 10.4319/lo.1990.35.5.1002
Janssens J, Meiners KM, Tison JL et al (2016) Incorporation of iron and organic matter into young Antarctic sea ice during its initial growth stages. Elementa 4:000123. 10.12952/journal.elementa.000123 DOI: 10.12952/journal.elementa.000123
Jeffery N, Maltrud ME, Hunke EC et al (2020) Investigating controls on sea-ice algal production using E3SMv1.1-BGC. Ann Glaciol 61:51–72. 10.1017/aog.2020.7 DOI: 10.1017/aog.2020.7
Jumars P, Deming J, Hill P et al (1993) Physical constraints on marine osmotrophy in an optimal foraging context. Mar Microb Food Webs 7:121–161
King AL, Sañudo-Wilhelmy SA, Boyd PW et al (2012) A comparison of biogenic iron quotas during a diatom spring bloom using multiple approaches. Biogeosciences 9:667–687. 10.5194/bg-9-667-2012 DOI: 10.5194/bg-9-667-2012
Krembs C, Eicken H, Deming JW (2011) Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. PNAS 108(9):3653–3658. 10.1073/pnas.1100701108 DOI: 10.1073/pnas.1100701108
Lancelot C, de Montety A, Goosse H et al (2009) Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 6:2861–2878. 10.5194/bg-6-2861-2009 DOI: 10.5194/bg-6-2861-2009
Lannuzel D, de Jong J, Schoemann V et al (2006) Development of a sampling and flow injection analysis technique for iron determination in the sea-ice environment. Anal Chim Acta 556:476–483. 10.1016/j.aca.2005.09.059 DOI: 10.1016/j.aca.2005.09.059
Lannuzel D, Schoemann V, de Jong J et al (2007) Distribution and biogeochemical behaviour of iron in the East Antarctic sea ice. Mar Chem 106:18–32. 10.1016/j.marchem.2006.06.010 DOI: 10.1016/j.marchem.2006.06.010
Lannuzel D, Schoemann V, de Jong J et al (2008) Iron study during a time series in the Western Weddell pack ice. Mar Chem 108:85–95. 10.1016/j.marchem.2007.10.006 DOI: 10.1016/j.marchem.2007.10.006
Lannuzel D, Schoemann V, Dumont I et al (2013) Effect of melting Antarctic sea ice on the fate of microbial communities studied in microcosms. Polar Biol 36:1483–1497. 10.1007/s00300-013-1368-7 DOI: 10.1007/s00300-013-1368-7
Lannuzel D, Grotti M, Abelmoschi ML et al (2015) Organic ligands control the concentrations of dissolved iron in Antarctic sea ice. Mar Chem 174:120–130. 10.1016/j.marchem.2015.05.005 DOI: 10.1016/j.marchem.2015.05.005
Lannuzel D, Vancoppenolle M, van der Merwe P, et al (2016) Iron in sea ice: Review and new insights. Elementa: Science of the Anthropocene. 4: 000130. DOI: https://doi.org/10.12952/journal.elementa.000130
Lieser JL, Curran MAJ, Bowie AR et al (2015) Antarctic slush-ice algal accumulation not quantified through conventional satellite imagery: beware the ice of March. Cryosphere Discussions 9:6187–6222. 10.5194/tcd-9-6187-2015 DOI: 10.5194/tcd-9-6187-2015
Lin H, Rauschenberg S, Hexel CR et al (2011) Free-drifting icebergs as sources of iron to the Weddell Sea. Deep Sea Res Part II 58:1392–1406. 10.1016/j.dsr2.2010.11.020 DOI: 10.1016/j.dsr2.2010.11.020
Lis H, Shaked Y, Kranzler C et al (2015) Iron bioavailability to phytoplankton: an empirical approach. ISME J 9:1003–1013. 10.1038/ismej.2014.199 DOI: 10.1038/ismej.2014.199
Lizotte MP (2003) The Microbiology of sea ice. In: Thomas DN, Dieckmann GS (eds) sea ice. Blackwell Science Ltd, Oxford. 10.1002/9780470757161.ch6 DOI: 10.1002/9780470757161.ch6
Maldonado MT, Price NM (1996) Influence of N substrate on Fe requirements of marine centric diatoms. Mar Ecol Prog Ser 141:161–172 DOI: 10.3354/meps141161
Maldonado MT, Price NM (1999) Utilization of iron bound to strong organic ligands by plankton communities in the subarctic Pacific Ocean. Deep Sea Res Part II 46:2447–2473. 10.1016/S0967-0645(99)00071-5 DOI: 10.1016/S0967-0645(99)00071-5
Marchetti A, Parker MS, Moccia LP et al (2009) Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature 457:467–470. 10.1038/nature07539 DOI: 10.1038/nature07539
McKay RML, Wilhelm SW, Hall J et al (2005) Impact of phytoplankton on the biogeochemical cycling of iron in subantarctic waters southeast of New Zealand during FeCycle. Global Biogeochem Cycles 19:GB4S24. 10.1029/2005GB002482 DOI: 10.1029/2005GB002482
Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579 DOI: 10.4319/lo.2000.45.3.0569
Miller LA, Fripiat F, Else BGT et al (2015) Methods for biogeochemical studies of sea ice: the state of the art, caveats, and recommendations. Elementa: Sci Anthropocene 3:000038. 10.12952/journal.elementa.000038 DOI: 10.12952/journal.elementa.000038
Mock T (2002) In situ primary production in young Antarctic sea ice. Hydrobiologia 470:127–132 DOI: 10.1023/A:1015676022027
Moore C, Mills M, Arrigo K et al (2013) nutrient limitation. Nat Geosci 6:701–710. 10.1038/NGEO1765 DOI: 10.1038/NGEO1765
Morán XAG, Gasol JM, Arin L et al (1999) A comparison between glass fiber and membrane filters for the estimation of phytoplankton POC and DOC production. Mar Ecol Prog Ser 187:31–41. 10.3354/meps187031 DOI: 10.3354/meps187031
Moreau S, Lannuzel D, Janssens J et al (2019) Sea-ice meltwater and circumpolar deep water drive contrasting productivity in three Antarctic polynyas. J Geophys Res: Oceans 124:2943–2968. 10.1029/2019JC015071 DOI: 10.1029/2019JC015071
Nicolaus M, Haas C, Willmes S (2009) Evolution of first-year and second-year snow properties on sea ice in the Weddell Sea during spring-summer transition. J Geophys Res: Atmosphere 114:D17109. 10.1029/2008JD011227 DOI: 10.1029/2008JD011227
Person R, Vancoppenolle M, Aumont O (2020) Iron incorporation from seawater into Antarctic sea ice: a model study. Global Biogeochem Cycles 34:e2020GB006665. 10.1029/2020GB006665 DOI: 10.1029/2020GB006665
Planquette H, Statham PJ, Fones GR et al (2007) Dissolved iron in the vicinity of the Crozet Islands, Southern Ocean. Deep Sea Res Part II 54:1999–2019. 10.1016/j.dsr2.2007.06.019 DOI: 10.1016/j.dsr2.2007.06.019
Planquette H, Sanders RR, Statham PJ et al (2011) Fluxes of particulate iron from the upper ocean around the Crozet Islands: a naturally iron-fertilized environment in the Southern Ocean. Global Biogeochem Cycles 25:GB2011. 10.1029/2010GB003789 DOI: 10.1029/2010GB003789
Pollard RT, Salter I, Sanders RJ et al (2009) Southern Ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457:577–580. 10.1038/nature07716 DOI: 10.1038/nature07716
Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 DOI: 10.4319/lo.1980.25.5.0943
Raiswell R, Tranter M, Benning LG et al (2006) Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim Cosmochim Acta 70:2765–2780. 10.1016/j.gca.2005.12.027 DOI: 10.1016/j.gca.2005.12.027
Raiswell R, Benning LG, Tranter M et al (2008) Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem Trans 9:1–9. 10.1186/1467-4866-9-7 DOI: 10.1186/1467-4866-9-7
Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461. 10.1111/j.1469-8137.1988.tb00282.x DOI: 10.1111/j.1469-8137.1988.tb00282.x
Raymond B, Meiners K, Fowler CW et al (2009) Cumulative solar irradiance and potential large-scale sea-ice algae distribution off East Antarctica (30°E–150°E). Polar Biol 32:443–452. 10.1007/s00300-008-0538-5 DOI: 10.1007/s00300-008-0538-5
Rintala J-M, Piiparinen J, Blomster J et al (2014) Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting. Polar Biol 37:1811–1822. 10.1007/s00300-014-1563-1 DOI: 10.1007/s00300-014-1563-1
Rose JM, Feng Y, Ditullio GR et al (2009) Synergistic effects of iron and temperature on Antarctic phytoplankton and microzooplankton assemblages. Biogeosciences 6:3131–3147. 10.5194/bg-6-3131-2009 DOI: 10.5194/bg-6-3131-2009
Roukaerts A, Cavagna A-J, Fripiat F et al (2015) Sea-ice algal primary production and nitrogen uptake rates off East Antarctica. Deep Sea Res Part II: Topical Stud Oceanogr. 10.1016/j.dsr2.2015.08.007 DOI: 10.1016/j.dsr2.2015.08.007
Sarthou G, Timmermans KR, Blain S et al (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42. 10.1016/j.seares.2004.01.007 DOI: 10.1016/j.seares.2004.01.007
Sarthou G, Vincent D, Christaki U et al (2008) The fate of biogenic iron during a phytoplankton bloom induced by natural fertilisation: impact of copepod grazing. Deep-Sea Research Part II: Topical Studies in Oceanography 55:734–751. 10.1016/j.dsr2.2007.12.033 DOI: 10.1016/j.dsr2.2007.12.033
Schoemann V, Wollast R, Chou L et al (2001) Effects of photosynthesis on the accumulation of Mn and Fe by Phaeocystis colonies. Limnol Oceanogr 46:1065–1076. 10.4319/lo.2001.46.5.1065 DOI: 10.4319/lo.2001.46.5.1065
Sedwick PN, DiTullio GR (1997) Regulation of algal blooms by the release of iron from in Antarctic shelf melting sea ice. Geophys Res Lett 24:2515–2518 DOI: 10.1029/97GL02596
Shaw TJ, Raiswell R, Hexel CR et al (2011) Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep Sea Res Part II 58:1376–1383. 10.1016/j.dsr2.2010.11.012 DOI: 10.1016/j.dsr2.2010.11.012
Smith WO Jr, Nelson DM (1985) Phytoplankton Bloom Produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–166 DOI: 10.1126/science.227.4683.163
St-Laurent P, Yager PL, Sherrell RM et al (2019) Modeling the seasonal cycle of iron and carbon fluxes in the Amundsen Sea Polynya, Antarctica. J Geophys Res: Oceans. 10.1029/2018JC014773 DOI: 10.1029/2018JC014773
Strzepek RF, Maldonado MT, Higgins JL et al (2005) Spinning the “Ferrous Wheel”: the importance of the microbial community in an iron budget during the FeCycle experiment. Global Biogeochem Cycles 19:GB4S26. 10.1029/2005GB002490 DOI: 10.1029/2005GB002490
Strzepek RF, Maldonado MT, Hunter KA et al (2011) Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol Oceanogr 56:1983–2002. 10.4319/lo.2011.56.6.1983 DOI: 10.4319/lo.2011.56.6.1983
Sunda W, Huntsman S (1995) Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem 50:189–206 DOI: 10.1016/0304-4203(95)00035-P
Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392 DOI: 10.1038/37093
Sunda WG, Huntsman SA (2011) Interactive effects of light and temperature on iron limitation in a diatom: implications for marine productivity and carbon cycling. Limnol Oceanogr 56:1475–1488. 10.4319/Lo.2011.56.4.1475 DOI: 10.4319/Lo.2011.56.4.1475
Tang D, Morel FMM (2006) Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar Chem 98(1):18–30. 10.1016/j.marchem.2005.06.003 DOI: 10.1016/j.marchem.2005.06.003
Taylor RL, Semeniuk DM, Payne CD et al (2013) Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. Journal of Geophysical Res: Oceans 118:3260–3277 DOI: 10.1002/jgrc.20244
Thomas DN, Dieckmann GS (2002) Biogeochemistry of Antarctic sea ice. Oceanogr Marine Biol 40:143–169
Timmermans KR, van der Wagt B, de Baar HJW (2004) Growth rates, half saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large open-ocean diatoms from the Southern Ocean. Limnol Oceanogr 49:2141–2151. 10.4319/lo.2004.49.6.2141 DOI: 10.4319/lo.2004.49.6.2141
Tison J-L, Worby A, Delille B et al (2008) Temporal evolution of decaying summer first-year sea ice in the Western Weddell Sea, Antarctica. Deep Sea Res Part II 55:975–987. 10.1016/j.dsr2.2007.12.021 DOI: 10.1016/j.dsr2.2007.12.021
Tortell PD, Maldonado MT, Price NM (1996) The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature 383:330–332. 10.1038/383330a0 DOI: 10.1038/383330a0
Tortell PD, Mills MM, Payne CD et al (2013) Inorganic C utilization and C isotope fractionation by pelagic and sea-ice algal assemblages along the Antarctic continental shelf. Mar Ecol Prog Ser 483:47–66. 10.3354/meps10279 DOI: 10.3354/meps10279
Tovar-Sanchez A, Sañudo-Wilhelmy SA, Garcia-Vargas M et al (2003) A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar Chem 82:91–99. 10.1016/S0304-4203(03)00054-9 DOI: 10.1016/S0304-4203(03)00054-9
Twining BS, Baines SB, Fisher NS et al (2004) Cellular iron contents of plankton during the Southern Ocean iron experiment (SOFeX). Deep Sea Res Part I 51:1827–1850. 10.1016/j.dsr.2004.08.007 DOI: 10.1016/j.dsr.2004.08.007
Twining BS, Baines SB (2013) The trace metal composition of marine phytoplankton. Ann Rev Mar Sci 5:191–215. 10.1146/annurev-marine-121211-172322 DOI: 10.1146/annurev-marine-121211-172322
Twining BS, Antipova O, Chappell PD et al (2021) Taxonomic and nutrient controls on phytoplankton iron quotas in the ocean. Limnol Oceanogr Lett 6:96–106. 10.1002/lol2.10179 DOI: 10.1002/lol2.10179
Underwood GJC, Fietz S, Papadimitriou S et al (2010) Distribution and composition of dissolved extracellular polymeric substances (EPS) in Antarctic sea ice. Mar Ecol Prog Ser 404:1–19 DOI: 10.3354/meps08557
Utermölh H (1958) Zur Vervelkommnung der quantitativen Phytoplankton- Methodik. Mitt Int Verein Theor Angew Limnol 9:1–38
van der Merwe P, Lannuzel D, Mancuso Nichols CA et al (2009) Biogeochemical observations during the winter–spring transition in East Antarctic sea ice: evidence of iron and exopolysaccharide controls. Mar Chem 115(3–4):163–175. 10.1016/j.marchem.2009.08.001 DOI: 10.1016/j.marchem.2009.08.001
van der Merwe P, Wuttig K, Holmes T et al (2019) High lability Fe particles sourced from glacial erosion can meet previously unaccounted biological demand: Heard Island, Southern Ocean. Front Mar Sci 6:1–20. 10.3389/fmars.2019.00332 DOI: 10.3389/fmars.2019.00332
Veldhuis MJW, Timmermans KR, Croot P et al (2005) Picophytoplankton: a comparative study of their biochemical composition and photosynthetic properties. J Sea Res 53:7–24. 10.1016/j.seares.2004.01.006 DOI: 10.1016/j.seares.2004.01.006
Verdugo P, Alldredge AL, Azam F et al (2004) The oceanic gel phase: a bridge in the DOM-POM continuum. Marine Chem 92:67–85 DOI: 10.1016/j.marchem.2004.06.017
Wang S, Bailey D, Lindsay K et al (2014) Impact of sea-ice on the marine iron cycle and phytoplankton productivity. Biogeosciences 11:4713–4731. 10.5194/bg-11-4713-2014 DOI: 10.5194/bg-11-4713-2014
Welschmeyer NA, Lorenzen CJ (1984) Carbon- 14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates’. Limnol Oceanogr 29(1):135–145 DOI: 10.4319/lo.1984.29.1.0135
Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res Oceanogr Abstr 10(3):221–231 DOI: 10.1016/0011-7471(63)90358-9
Yager PL, Deming JW (1999) Pelagic microbial activity in an arctic polynya: testing for temperature and substrate interactions using a kinetic approach. Limnol Oceanogr 44:1882–1893 DOI: 10.4319/lo.1999.44.8.1882