[en] The brown widow spider, Latrodectus geometricus, is a predator of a variety of agricultural insects and is also hazardous for humans. Its venom is a true pharmacopeia representing neurotoxic peptides targeting the ion channels and/or receptors of both vertebrates and invertebrates. The lack of transcriptomic information, however, limits our knowledge of the diversity of components present in its venom. The purpose of this study was two-fold: (1) carry out a transcriptomic analysis of the venom, and (2) investigate the bioactivity of the venom using an electrophysiological bioassay. From 32,505 assembled transcripts, 8 toxin families were classified, and the ankyrin repeats (ANK), agatoxin, centipede toxin, ctenitoxin, lycotoxin, scorpion toxin-like, and SCP families were reported in the L. geometricus venom gland. The diversity of L. geometricus venom was also uncovered by the transcriptomics approach with the presence of defensins, chitinases, translationally controlled tumor proteins (TCTPs), leucine-rich proteins, serine proteases, and other important venom components. The venom was also chromatographically purified, and the activity contained in the fractions was investigated using an electrophysiological bioassay with the use of a voltage clamp on ion channels in order to find if the neurotoxic effects of the spider venom could be linked to a particular molecular target. The findings show that U24-ctenitoxin-Pn1a involves the inhibition of the insect sodium (Nav) channels, BgNav and DmNav. This study provides an overview of the molecular diversity of L. geometricus venom, which can be used as a reference for the venom of other spider species. The venom composition profile also increases our knowledge for the development of novel insecticides targeting voltage-gated sodium channels.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Khamtorn, Pornsawan; Program in Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
Peigneur, Steve ; Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
Gobbi Amorim, Fernanda ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Tytgat, Jan; Toxicology and Pharmacology, Campus Gasthuisberg, University of Leuven (KU Leuven), 3000 Leuven, Belgium
Daduang, Sakda; Center for Research and Development of Herbal Health Products (CDR-HHP), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand ; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40002, Thailand ; Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
Language :
English
Title :
De Novo Transcriptome Analysis of the Venom of Latrodectus geometricus with the Discovery of an Insect-Selective Na Channel Modulator.
GOE7120N, GOC2319N, and GOA4919N from the F.W.O. Vlaanderen, awarded to J.T. and S.P. was supported by KU Leuven funding (PDM/19/164) and F.W.O. Vlaanderen grant 12W7822N.Funding: This research was funded by The Thailand Research Fund, Royal Golden Jubilee Ph.D. program (PHD0104/2558) and was partially supported by the KKU Research Fund, fiscal year 2020 and Thailand Research Fund, grant number DBG6080006. This study was supported by grants
World Spider Catalog. Version 22.5. Available online: http://wsc.nmbe.ch (accessed on 30 August 2021).
Wang, X.; Tang, X.; Xu, D.; Yu, D. Molecular basis and mechanism underlying the insecticidal activity of venoms and toxins from Latrodectus spiders. Pest. Manag. Sci. 2019, 75, 318–323. [CrossRef] [PubMed]
Tao, H.; Chen, X.; Deng, M.; Xiao, Y.; Wu, Y.; Liu, Z.; Zhou, S.; He, Y.; Liang, S. Interaction site for the inhibition of tarantula Jingzhaotoxin-XI on voltage-gated potassium channel Kv2.1. Toxicon 2016, 124, 8–14. [CrossRef] [PubMed]
Wang, Y.; Luo, Z.; Lei, S.; Li, S.; Li, X.; Yuan, C. Effects and mechanism of gating modifier spider toxins on the hERG channel. Toxicon 2021, 189, 56–64. [CrossRef] [PubMed]
Brown, K.S.; Necaise, J.S.; Goddard, J. Additions to the known U.S. distribution of Latrodectus geometricus (Araneae: Theridiidae). J. Med. Entomol. 2008, 45, 959–962. [CrossRef]
Muslimin, M.; Wilson, J.J.; Ghazali, A.R.M.; Braima, K.A.; Jeffery, J.; Wan-Nor, F.; Alaa-Eldin, M.E.; Mohd-Zin, S.W.; Wan-Yusoff, W.S.; Noram-Rashid, Y.; et al. First report of brown widow spider sightings in Peninsular Malaysia and notes on its global distribution. J. Venom. Anim. Toxins Incl. Trop. Dis. 2015, 21, 11. [CrossRef]
Goddard, J.; Upshaw, S.; Held, D.; Johnnson, K. Severe reaction from envenomation by the brown widow spider, Latrodectus geometricus (Araneae: Theridiidae). South. Med. J. 2008, 101, 1269–1270. [CrossRef]
Earwood, R.C.; Ladde, J.; Giordano, P.A. A case of brown widow envenomation in Central Florida. Cureus 2020, 12, e9165. [CrossRef]
Müller, G.J. Black and brown widow spider bites in South Africa. A series of 45 cases. S. Afr. Med. J. 1993, 83, 399–405.
Castillo, J.D.; Pumplin, D.W. Discrete and discontinuous action of brown widow spider venom on the presynaptic nerve terminals of frog muscle. J. Physiol. 1975, 252, 491–508. [CrossRef]
Guerrero, B.; Finol, H.J.; Reyes-Lugo, M.; Salazar, A.M.; Sánchez, E.E.; Estrella, A.; Roschman-González, A.; Ibarra, C.; Salvi, I.; Rodríguez-Acosta, A. Activities against hemostatic proteins and adrenal gland ultrastructural changes caused by the brown widow spider Latrodectus geometricus (Araneae: Theridiidae) venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 113–121. [CrossRef]
Liu, Y.; Maas, A.; Waloszek, D. Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arthropod Struct. Dev. 2009, 38, 401–416. [CrossRef]
Keyler, D.E.; Ahmad, M.; Rodriguez, A.; De Silva, P.M.K. Latrodectus geometricus (Aranea: Theridiidae) envenoming: Rapid resolution of symptoms following F(ab’)2 antivenom therapy. Toxicon 2020, 188, 76–79. [CrossRef]
Pumplin, D.W.; del Castillo, J. Release of packets of acetylcholine and synaptic vesicle elicited by brown widow spider venom in frog motor nerve endings poisoned by botulinum toxin. Life Sci. 1975, 17, 137–141. [CrossRef]
Pumplin, D.W.; Reese, T.S. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. J. Physiol. 1977, 273, 443–457. [CrossRef]
Reyes-Lugo, M.; Sánchez, T.; Finol, H.J.; Sánchez, E.E.; Suárez, J.A.; Guerreiro, B.; Rodríguez-Acosta, A. Neurotoxin activity and ultrastructural changes in muscles caused by the brown widow spider Latrodectus geometricus venom. Rev. Inst. Med. Trop. São Paulo 2009, 51, 95–101. [CrossRef]
Riddle, M.; Carstairs, S. Successful treatment of brown widow spider envenomation with Latrodectus mactans antivenom. Clin. Toxicol. 2020, 58, 301–302. [CrossRef]
Khamtorn, P.; Rungsa, P.; Jangpromma, N.; Klaynongsruang, S.; Daduang, J.; Tessiri, T.; Daduang, S. Partial proteomic analysis of brown widow spider (Latrodectus geometricus) venom to determine the biological activities. Toxicon X 2020, 8, 100062. [CrossRef]
Diego-García, E.; Peigneur, S.; Waelkens, E.; Debaveye, S.; Tytgat, J. Venom components from Citharischius crawshayi spider (Family Theraphosidae): Exploring transcriptome, venomics, and function. Cell. Mol. Life Sci. 2010, 67, 2799–2813. [CrossRef]
Diniz, M.R.V.; Paiva, A.L.B.; Guerra-Duarte, C.; Nishiyama Jr, M.Y.; de Oliveira, U.; Borges, M.H.; Yates, J.R.; Junqueira-de-Azevedo, I.D. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS ONE 2018, 13, e0200628. [CrossRef]
Garb, J. Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J. Vis. Exp. 2014, 93, e51618. [CrossRef]
Haney, R.A.; Matte, T.; Forsyth, F.S.; Garb, J.E. Alternative transcription at venom genes and its role as a complementary mechanism for the generation of venom complexity in the common house spider. Front. Ecol. Evol. 2019, 7, 85. [CrossRef]
Hu, A.; Chen, B.; Xiao, Z.; Zhou, X.; Liu, Z. Transcriptomic analysis of the spider venom gland reveals venom diversity and species consanguinity. Toxins 2019, 11, 68. [CrossRef]
Koua, D.; Mary, R.; Ebou, A.; Barrachina, C.; Koulali, K.E.; Cazals, G.; Charnet, P.; Dutertre, S. Proteotranscriptomic insights into the venom composition of the wolf spider Lycosa tarantula. Toxins 2020, 12, 501. [CrossRef]
Medina-Santos, R.; Guerra-Duarte, C.; Lima, S.A.; Costa-Oliveira, F.; de Aquino, P.A.; do Camo, A.O.; Ferreyra, C.B.; Gonzalez-Kozlova, E.E.; Kalapothakis, E.; Chávez-Olórtegui, C. Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie 2019, 167, 81–92. [CrossRef]
Oldrati, V.; Koua, D.; Allard, P.; Hulo, N.; Arrell, M.; Nentwig, W.; Lisacek, F.; Wolfender, J.; Kuhn-Nentwig, L.; Stöcklin, R. Peptidomic and transcriptomic profiling of four distinct spider venoms. PLoS ONE 2017, 12, e0172966. [CrossRef]
Paiva, A.L.B.; Mudadu, M.A.; Pereira, E.H.T.; Marri, C.A.; Guerra-Duarte, C.; Diniz, M.R.V. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019, 163, 59–69. [CrossRef]
Tang, X.; Yang, J.; Duan, Z.; Jiang, L.; Liu, Z.; Liang, S. Molecular diversification of antimicrobial peptides from the wolf spider Lycosa sinensis venom based on peptidomic, transcriptomic, and bioinformatic analyses. Acta Biochim. Sin. 2020, 52, 1274–1280. [CrossRef]
Undheim, E.A.B.; Sunagar, K.; Herzig, V.; Kely, L.; Low, D.H.W.; Jackson, T.N.W.; Jones, A.; Kurniawan, N.; King, G.F.; Ali, S.A.; et al. A proteomics and transcriptomics investigation of the venom from the barychelid spider Trittame loki (brush-foot trapdoor). Toxins 2013, 5, 2488–2503. [CrossRef]
Peigneur, S.; Paiva, A.L.B.; Cordeiro, M.R.; Borges, M.H.; Diniz, M.R.V.; de Lima, M.E.; Tytgat, J. Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating. Toxicon 2018, 10, 337. [CrossRef]
He, Q.; Duan, Z.; Yu, Y.; Liu, Z.; Liu, Z.; Liang, S. The venom gland transcriptome of Latrodectus tredecimguttatus revealed by deep sequencing and cDNA library analysis. PLoS ONE 2013, 8, e81357. [CrossRef] [PubMed]
Penaforte, C.L.; Prado, V.F.; Prado, M.A.; Romano-Silva, M.A.; Guimarães, P.E.; De Marco, L.; Gomez, M.V.; Kalapothakis, E. Molecular cloning of cDNAs encoding insecticidal neurotoxic peptides from the spider Phoneutria nigriventer. Toxicon 2000, 38, 1443–1449. [CrossRef]
Reily, M.D.; Thanabal, V.; Adams, M.E. The solution structure of omega-Aga-IVB, a P-type calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. J. Biomol. NMR 1995, 5, 122–132. [CrossRef]
Fletcher, J.I.; Chapman, B.E.; Mackay, J.P.; Howden, M.E.; King, G.F. The structure of versutoxin (delta-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. Structure 1997, 5, 1525–1535. [CrossRef]
Luch, A. Mechanistic insights on spider neurotoxins. EXS 2010, 100, 293–315. [CrossRef]
Orlova, E.V.; Ranhman, M.A.; Gowen, B.; Volynski, K.E.; Ashton, A.C.; Manser, C.; van Heel, M.; Ushkaryov, Y.A. Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores. Nat. Strut. Biol. 2000, 7, 48–53. [CrossRef]
Yan, S.; Wang, X. Recent advances in research on widow spider venoms and toxins. Toxins 2015, 7, 5055–5067. [CrossRef]
Ashton, A.C.; Rahman, M.A.; Volynski, K.E.; Manser, C.; Orlova, E.V.; Matsushita, H.; Davletov, B.A.; van Heel, M.; Grishin, E.V.; Ushkaryov, Y.A. Tetramerisation of alpha-latrotoxin by divalent cations is responsible for toxin-induced non-vesicular release and contributes to the Ca(2+)-dependent vesicular exocytosis from synaptosomes. Biochimie 2000, 82, 453–468. [CrossRef]
El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [CrossRef]
Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [CrossRef]
Undheim, E.; Jones, A.; Clauser, K.R.; Holland, J.W.; Pineda, S.S.; King, G.F.; Fry, B.G. Clawing through evolution: Toxin diversification and convergence in the ancient lineage Chilopoda (Centipedes). Mol. Biol. Evol. 2014, 31, 2124–2148. [CrossRef]
Jiang, L.; Zhang, D.; Zhang, Y.; Peng, L.; Chen, J.; Liang, S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2010, 5, 81–88. [CrossRef]
Huang, L.; Wang, Z.; Yu, N.; Li, J.; Liu, Z. Toxin diversity revealed by the venom gland transcriptome of Pardosa pseudoannulata, a natural enemy of several insect pests. Comp. Biochem. Physiol. Part D Genom. Proteom. 2008, 28, 172–182. [CrossRef]
Kubista, H.; Mafra, R.A.; Chong, Y.; Nicholson, G.M.; Beirão, P.S.L.; Cruz, J.S.; Boehm, S.; Nentwig, W.; Kuhn-Nentwig, L. CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons. Neuropharmacology 2007, 52, 1650–1662. [CrossRef]
Kuhn-Nentwig, L.; Langenegger, N.; Heller, M.; Koua, D.; Nentwig, W. The dual prey-inactivation strategy of spiders-in-depth venomic analysis of Cupiennius salei. Toxins 2019, 11, 167. [CrossRef]
Clémençon, B.; Kuhn-Nentwig, L.; Langenegger, N.; Kopp, L.; Peigneur, S.; Tytgat, J.; Nentwig, W.; Lüscher, B.P. Neurotoxin merging: A strategy deployed by the venom of spider Cupiennius salei to potentiate toxicity on insects. Toxins 2020, 12, 250. [CrossRef]
Wullschleger, B.; Nentwig, W.; Kuhn-Nentwig, L. Spider venom: Enhancement of venom efficacy mediated by different synergistic strategies in Cupiennius salei. J. Exp. Biol. 2005, 208, 2115–2121. [CrossRef]
Luna-Ramirez, K.; Quintero-Hernández, V.; Juárez-González, V.; Possani, L.D. Whole transcriptome of the venom gland from Urodacus yaschenkoi scorpion. PLoS ONE 2015, 10, e0127883. [CrossRef]
Gibbs, G.M.; Roelants, K.; O’Bryan, M.K. The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins—Roles in reproduction, cancer, and immune defense. Endocr. Rev. 2008, 29, 865–897. [CrossRef]
Silva, E.C.; Camargos, T.S.; Maranhão, A.Q.; Silva-Pereira, I.; Silva, L.P.; Possani, L.D.; Schwartz, E.F. Cloning and characterization of cDNA sequences encoding for new venom peptides of the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 2009, 54, 252–261. [CrossRef]
Petegem, F.V. Ryanodine receptors: Structure and function. J. Biol. Chem. 2012, 287, 31624–31632. [CrossRef]
McCleary, R.J.R.; Kini, R.M. Non-enzymatic proteins from snake venoms: A gold mine of pharmacological tools and drug leads. Toxicon 2013, 62, 56–74. [CrossRef]
Lodovicho, M.E.; Costa, T.R.; Bernardes, C.P.; Menaldo, D.L.; Zoccal, K.L.; Carone, S.E.; Menaldo, D.L.; Zoccal, K.F.; Carone, S.E.; Rosa, J.C.; et al. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicol. Lett. 2017, 265, 156–169. [CrossRef]
Gasparini, S.; Kiyatkin, N.; Drevet, P.; Boulain, J.C.; Tacnet, F.; Ripoche, P.; Forest, E.; Grishin, E.; Ménez, A. The low molecular weight protein which co-purifies with alpha-latrotoxin is structurally related to crustacean hyperglycemic hormones. J. Biol. Chem. 1994, 269, 19803–19809. [CrossRef]
Rohou, A.; Nield, J.; Ushkaryyov, Y.A. Insecticidal toxins from black widow spider venom. Toxicon 2007, 49, 531–549. [CrossRef]
Wang, X.C.; Duan, Z.G.; Yang, J.; Yan, X.J.; Zhou, H.; He, X.Z.; Liang, S.P. Physiological and biochemical analysis of L. tredecimgut-tatus venom collected by electrical stimulation. J. Physiol. Biochem. 2007, 63, 221–230. [CrossRef]
Dunbar, J.P.; Fort, A.; Redureau, D.; Sulpice, R.; Dugon, M.M.; Quinton, L. Venomics approach reveals a high proportion of Latrodectus-like toxins in the venom of the Noble false widow spider Steatoda nobilis. Toxins 2020, 12, 402. [CrossRef]
Ye, J.; Zhao, H.; Wang, H.; Bian, J.; Zheng, R. A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 2010, 56, 101–106. [CrossRef] [PubMed]
Langengger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider venom: Components, modes of action, and novel strategies in transcrip-tomic and proteomic analyses. Toxins 2019, 11, 611. [CrossRef] [PubMed]
Dubocskii, P.V.; Vassilevski, A.A.; Samsonova, O.V.; Egorova, N.S.; Kozlov, S.A.; Feofanov, A.V.; Arseniev, A.S.; Grishin, E.V. Novel lynx spider toxin shares common molecular architecture with defense peptides from frog skin. FEBS J. 2011, 278, 4382–4393. [CrossRef] [PubMed]
Haney, R.A.; Ayoub, N.A.; Clarke, T.H.; Hayashi, C.Y.; Garb, J.E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genom. 2014, 15, 366. [CrossRef]
Liberato, T.; Troncine, L.R.P.; Yamashiro, E.T.; Serrana, S.M.T.; Zelamis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 2015, 48, 901–906. [CrossRef]
Washburn, M.P.; Wolters, D.; Yates, J.R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 2001, 19, 242–247. [CrossRef]
Sade, Y.B.; Bóia-Ferreira, M.; Gremski, L.H.; da Silveira, R.B.; Gremski, W.; Senff-Ribeiro, A.; Chaim, O.M.; Veiga, S.S. Molecular cloning, heterologous expression and functional characterization of a novel translationally-controlled tumor protein (TCTP) family member from Loxosceles intermedia (brown spider) venom. Int. J. Biochem. Cell Biol. 2012, 44, 170–177. [CrossRef]
Serrano, S.M.T. The long read of research on snake venom serine proteases. Toxicon 2013, 62, 19–26. [CrossRef]
Borges, M.H.; Figueriredo, S.G.; Leprevost, F.V.; Lima, M.E.D.; Cordeiro, M.N.; Diniz, M.R.V.; Moresco, J.; Carvalho, P.C.; Yates, J.R. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: Searching for potential biotechnological applications. J. Proteom. 2016, 136, 35–47. [CrossRef]
da Silveira, R.B.; Wille, A.C.M.; Chaim, O.M.; Appel, M.H.; Silva, D.T.; Franco, C.R.C.; Toma, L.; Mangili, O.C.; Gremski, W.; Dietrich, C.P.; et al. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. Biochem. J. 2007, 406, 355–363. [CrossRef]
Estrada-Gomez, S.; Munoz, L.J.V.; Lanchero, P.; Latorre, C.S. Partial characterization of venom from the Colombian spider Phoneutria boliviensis (Aranae:Ctenidae). Toxins 2015, 7, 2872–2887. [CrossRef]
Kiyatkin, N.I.; Dulubova, I.E.; Chekhovskaya, I.A.; Grishin, E.V. Cloning and structure of cDNA encoding alpha-latrotoxin from black widow spider venom. FEBS Lett. 1990, 270, 127–131. [CrossRef]
Kiyatkin, N.; Dulubova, I.; Grishin, E. Cloning and structural analysis of alpha-latroinsectotoxin cDNA. Abundance of ankyrin-like repeats. Eur. J. Biochem. 1993, 213, 121–127. [CrossRef]
Cock, P.A.; Fields, C.J.; Goto, N.; Heuer, M.; Rice, P. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010, 38, 1767–1771. [CrossRef]
Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [CrossRef]
Das, S.; Shyamal, S.; Durica, D.S. Analysis of annotation and differential expression methods used in RNA-seq studies in crustacean systems. Intergr. Comp. Biol. 2016, 56, 1067–1079. [CrossRef]
Li, R.; Li, Y.; Kristiansen, K.; Wang, J. SOAP: Short oiligonucleotide alignment program. Bioinfomatics 2008, 24, 713–714. [CrossRef]
Buckingham, S.D.; Pym, L.; Sattelle, D.B. Oocytes as an expression system for studying receptor/channel targets of drugs and pesticides. Methods Mol. Biol. 2006, 322, 331–345. [CrossRef]
Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [CrossRef]