Hymenoptera; Parasitic wasp; Lipids; Lipogenesis; Life histories; Nutrient metabolism
Abstract :
[en] Fat reserves, specifically the accumulation of triacylglycerols, are a major energy source and play a key role for life histories. Fat accumulation is a conserved metabolic pattern across most insects, yet in most parasitoid species adults do not gain fat mass, even when nutrients are readily available and provided ad libitum . This extraordinary physiological phenotype has evolved repeatedly in phylogenetically dispersed parasitoid species. This poses a conundrum because it could lead to significant constraints on energy allocation toward key adult functions such as survival and reproduction. Recent work on the underlying genetic and biochemical mechanisms has spurred a debate on fat accumulation versus fat production, because of incongruent interpretation of results obtained using different methodologies. This debate is in part due to semantics, highlighting the need for a synthetic perspective on fat accumulation that reconciles previous debates and provides new insights and terminology. In this paper, we propose updated, unambiguous terminology for future research in the field, including “fatty acid synthesis ”and “lack of adult fat accumulation ”, and describe the distinct metabolic pathways involved in the complex process of lipogenesis. We then discuss the benefits and drawbacks of the main methods available to measure fatty acid synthesis and adult fat accumulation. Most importantly, gravimetric/colorimetric and isotope tracking methods give complementary information, provided that they are applied with appropriate controls and interpreted correctly. We also compiled a comprehensive list of fat accumulation studies performed during the last 25 years. We present avenues for future research that combine chemistry, ecology, and evolution into an integrative approach, which we think is needed to understand the dynamics of fat accumulation in parasitoids.
Disciplines :
Zoology Environmental sciences & ecology
Author, co-author :
Visser, Bertanne ; Université de Liège - ULiège > TERRA Research Centre > Gestion durable des bio-agresseurs
Le Lann, Cécile; CNRS, ECOBIO (écosystèmes, Biodiversité, Évolution) – UMR, Université de Rennes, France
Hahn, Daniel A.; Department of Entomology and Nematology, The University of Florida, United States
Lammers, Mark; Institute for Evolution and Biodiversity, University of Münster, Germany
Nieberding, Caroline ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement (Arlon Campus Environnement) > Zoogéographie ; Evolutionary Ecology and Genetics Group, UCLouvain, Belgium
Alborn, Hans T.; United States Department of Agriculture, Chemistry Research Unit, Gainesville, United States
Enriquez, Thomas ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Scheifler, Mathilde ; Université de Liège - ULiège > Département GxABT > Gestion durable des bio-agresseurs
Harvey, Jeffrey A.; Department of Terrestrial Ecology, Netherlands Institute of Ecology, Netherlands ; Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Netherlands
Ellers, Jacintha; Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Netherlands
Language :
English
Title :
Many parasitoids lack adult fat accumulation, despite fatty acid synthesis: A discussion of concepts and considerations for future research
Bailey, P.S., and C.A. Bailey. 2000. Organic chemistry A brief survey of concepts and applications.
Barlow, J.S., Jones, D., A comparative study of transacylation in three insect species. Can. J. Zool. 59 (1981), 1141–1147, 10.1139/z81-159.
Beenakkers, A.M.T., Van der Horst, D.J., Van Marrewijk, W.J.A., Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 24 (1985), 19–67, 10.1016/0163-7827(85)90007-4.
Casas, J., Body, M., Gutzwiller, F., Giron, D., Lazzari, C.R., et al. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp. J. Insect Physiol. 79 (2015), 27–35, 10.1016/j.jinsphys.2015.05.005.
Casas, J., Driessen, G., Mandon, N., Wielaard, S., Desouhant, E., et al. Energy dynamics in a parasitoid foraging in the wild. J. Anim. Ecol. 72 (2003), 691–697 http://www.jstor.org/stable/3505646.
Chapman, R.F., Simpson, S.J., Douglas, A.E., The Insects Structure and Function. 5th ed., 2013, Cambridge University Press editors.
Didion, E.M., Sabree, Z.L., Kenyon, L., Nine, G., Hagan, R.W., et al. Microbiome reduction prevents lipid accumulation during early diapause in the northern house mosquito, Culex pipiens. J. Insect Physiol., 134, 2021, 104295, 10.1016/j.jinsphys.2021.104295.
Eijs, I.E.M., Ellers, J., van Duinen, G.J., Feeding strategies in drosophilid parasitoids: the impact of natural food resources on energy reserves in females. Ecol. Entomol. 23 (1998), 133–138, 10.1046/j.1365-2311.1998.00117.x.
Ellers, J., Fat and eggs: an alternative method to measure the trade-off between survival and reproduction in insect parasitoids. Neth. J. Zool. 46 (1996), 227–235, 10.1163/156854295X00186.
Enriquez, T., Lievens, V., Nieberding, C.M., Visser, B., Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Sci. Rep., 12(1), 2022, 12855, 10.1038/s41598-022-15325-0.
Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Belmonte, J.C.I., et al. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. BioTechniques 46:2 (2009), 101–113, 10.2144/000113078.
Folch, J., Lees, M., Stanley, G.H.S., A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1), 1957.
de Freitas Bueno, R.C.O., Parra, J.R.P., de Freitas Bueno, A., Trichogramma pretiosum parasitism of Pseudoplusia includens and Anticarsia gemmatalis eggs at different temperatures. Biol. Control 60:2 (2012), 154–162, 10.1016/j.biocontrol.2011.11.005.
Giron, D., Casas, J., Lipogenesis in an adult parasitic wasp. J. Insect Physiol. 49 (2003), 141–147, 10.1016/S0022-1910(02)00258-5.
Gomes, E., Rey, B., Débias, F., Amat, I., Desouhant, E., Dealing with host and food searching in a diurnal parasitoid: consequences of light at night at intra- and trans-generational levels. Insect Conserv. Divers. 14 (2021), 235–246, 10.1111/icad.12477.
Gündüz, E.A., Gülel, A., Işitan, O.V., Boz, A., Cesur, O., Effects of sugar feeding on lipid, glycogen, and total sugar levels of a female parasitoid, Bracon hebetor (Say) (Hymenoptera: braconidae). Turk. J. Agric. For. 34 (2010), 343–347, 10.3906/tar-0904-21.
Guo, Y., Walther, T.C., Rao, M., Stuurman, N., Goshima, G., et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453 (2008), 657–661, 10.1038/nature06928.
Handel, E.V., Rapid determination of glycogen and sugars in mosquitoes. J. Am. Mosq. Control Assoc. 1:3 (1985), 299–301.
Hazel, J.R., Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?. Annu. Rev. Physiol. 57 (1995), 19–42, 10.1146/annurev.ph.57.030195.000315.
Howard, R.W., Blomquist, G.J., Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:1 (2005), 371–393, 10.1146/annurev.ento.50.071803.130359.
Işitan, O.V., Gündüz, N.E.A., Gülel, A., Protein and lipid amounts of the parasitoid Bracon hebetor Say (Hymenoptera: braconidae) at constant and alternating temperatures. Turk. J. Zool. 35 (2011), 747–753, 10.3906/zoo-1007-25.
Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., et al. Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. U.S.A. 104:20 (2007), 8253–8256, 10.1073/pnas.0702726104.
Jones, D., Barlow, J.S., Thompson, S.N., Exeristes, Itoplectis, Aphaereta, Brachymeria, and Hyposoter species: in vitro glyceride synthesis and regulation of fatty acid composition. Exp. Parasitol. 54 (1982), 340–351, 10.1016/0014-4894(82)90043-1.
Jurenka, R., Insect Pheromone Biosynthesis. The chemistry of Pheromones and Other Semiochemicals I. Topics in Current Chemistry. 2004, Springer, 97–132.
Kaczmarek, A., Boguś, M., The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ, 9, 2021, e12563, 10.7717/peerj.12563.
Kersten, S., Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2 (2001), 282–286, 10.1093/embo-reports/kve071.
Keymer, A., Gutjahr, C., Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Curr. Opin. Plant Biol. 44 (2018), 137–144, 10.1016/j.pbi.2018.04.005.
van der Kooi, C.J., Schwander, T., On the fate of sexual traits under asexuality. Biol. Rev. 89:4 (2014), 805–819, 10.1111/brv.12078.
Kraaijeveld, K., Neleman, P., Marien, J., de Meijer, E., Ellers, J., Genomic resources for Goniozus legneri, Aleochara bilineata and Paykullia maculata, representing three independent origins of the parasitoid lifestyle in insects. G3 Genes Genomes Genet., 2019, 10.1534/g3.119.300584.
Lammers, M., van Gorkum, T.A.M., Hoeijmans, S., Kraaijeveld, K., Harvey, J.A., et al. Lipids as currency in ecological interactions: competition and facilitation between two lipid scavenging parasitoids. bioRxiv, 2020, 1–31, 10.1101/2020.03.11.987453.
Lammers, M., Kraaijeveld, K., Mariën, J., Ellers, J., Gene expression changes associated with the evolutionary loss of a metabolic trait: lack of lipogenesis in parasitoids. BMC Genom. 20 (2019), 1–14, 10.1186/s12864-019-5673-6.
Le Lann, C., Visser, B., van Baaren, J., van Alphen, J.J.M., Ellers, J., Comparing resource exploitation and allocation of two closely related aphid parasitoids sharing the same host. Evol. Ecol. 26:1 (2012), 79–94, 10.1007/s10682-011-9498-2.
Le Lann, C., Visser, B., Mériaux, M., Moiroux, J., van Baaren, J., et al. Rising temperature reduces divergence in resource use strategies in coexisting parasitoid species. Oecologia 174 (2014), 967–977, 10.1007/s00442-013-2810-9.
Lee, J.C., Heimpel, G.E., Leibee, G.L., Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol. Exp. Appl. 111 (2004), 189–199, 10.1111/j.0013-8703.2004.00165.x.
Lightle, D., Ambrosino, M., Lee, J.C., Sugar in moderation: sugar diets affect short-term parasitoid behaviour. Physiol. Entomol. 35 (2010), 179–185, 10.1111/j.1365-3032.2009.00718.x.
Liu, W.X., Wang, W.X., Zhang, Y.B., Wang, W., Lu, S.L., et al. Adult diet affects the life history and host-killing behavior of a host-feeding parasitoid. Biol. Control 81 (2015), 58–64, 10.1016/j.biocontrol.2014.11.002.
Luo, S., Li, J., Liu, X., Lu, Z., Pan, W., et al. Effects of six sugars on the longevity, fecundity and nutrient reserves of Microplitis mediator. Biol. Control 52 (2010), 51–57, 10.1016/j.biocontrol.2009.09.002.
Malcicka, M., Visser, B., Ellers, J., An evolutionary perspective on linoleic acid synthesis in animals. Evol. Biol. 45:1 (2018), 15–26, 10.1007/s11692-017-9436-5.
Moiroux, J., Giron, D., Vernon, P., van Baaren, J., van Alphen, J.J.M., Evolution of metabolic rate in a parasitic wasp: the role of limitation in intrinsic resources. J. Insect Physiol. 58 (2012), 979–984, 10.1016/j.jinsphys.2012.04.018.
Moiroux, J., Le Lann, C., Seyahooei, M.A., Vernon, P., Pierre, J.S., et al. Local adaptations of life-history traits of a Drosophila parasitoid, Leptopilina boulardi: does climate drive evolution?. Ecol. Entomol. 35 (2010), 727–736, 10.1111/j.1365-2311.2010.01233.x.
Muller, D., Giron, D., Desouhant, E., Rey, B., Casas, J., et al. Maternal age affects offspring nutrient dynamics. J. Insect Physiol. 101 (2017), 123–131, 10.1016/j.jinsphys.2017.07.011.
Multerer, M.T., Wendler, M., Ruther, J., The biological significance of lipogenesis in Nasonia vitripennis. Proceedings of the Royal Society B: Biological Sciences, 289, 2022, 10.1098/rspb.2022.0208.
Murphy, E.J., Stable isotope methods for the in vivo measurement of lipogenesis and triglyceride metabolism. J. Anim. Sci. 84 (2006), 94–104, 10.2527/2006.8413_supple94x.
Musselman, L.P., Fink, J.L., Narzinski, K., Ramachandran, P.V., Hathiramani, S.S., et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. DMM Dis. Models Mech. 4:6 (2011), 842–849, 10.1242/dmm.007948.
Musselman, L.P., Kühnlein, R.P., Drosophila as a model to study obesity and metabolic disease. J. Exp. Biol., 221, 2018, jeb163881, 10.1242/jeb.163881.
Olson, D.A.W.N.M., Fadamiro, H., Lundgren, J.G., Heimpel, G.E., Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiol. Entomol. 25 (2000), 17–26, 10.1046/j.1365-3032.2000.00155.x.
Ortel, J., Effects of lead and cadmium on chemical composition and total water content of the pupal parasitoid, Pimpla turionellae. Entomol. Exp. Appl. 59:1 (1991), 93–100, 10.1111/j.1570-7458.1991.tb01491.x.
Popham, H.J.R., Chippendale, G.M., Effect of a hypolipidemic agent on the growth and development of the southwestern corn borer, Diatraea grandiosella. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 115:3 (1996), 247–249, 10.1016/S0742-8413(96)00134-X.
Prager, L., Bruckmann, A., Ruther, J., De novo biosynthesis of fatty acids from α-D-glucose in parasitoid wasps of the Nasonia group. Insect Biochem. Mol. Biol., 115, 2019, 103256, 10.1016/j.ibmb.2019.103256.
Pullin, A.S., Adult feeding time, lipid accumulation, and overwintering in Aglais urticae and Inachis io (Lepidoptera: nymphalidae). J. Zool. 211:4 (1987), 631–641, 10.1111/j.1469-7998.1987.tb04476.x.
Quicray, M., Wilhelm, L., Enriquez, T., He, S., Scheifler, M., et al. The Drosophila -parasitizing wasp Leptopilina heterotoma: a comprehensive model system in ecology and evolution. Ecol. Evol., 13(1), 2023, 10.1002/ece3.9625.
Rivero, A., West, S.A., The physiological costs of being small in a parasitic wasp. Evol. Ecol. Res. 4 (2002), 407–420.
Rock, C.O., Jackowski, S., Forty years of bacterial fatty acid synthesis. Biochem. Biophys. Res. Commun. 292 (2002), 1155–1166, 10.1006/bbrc.2001.2022.
Ruther, J., Prager, L., Pokorny, T., Parasitic wasps do not lack lipogenesis. Proceedings of the Royal Society B: Biological Sciences, 288, 2021, 20210548, 10.1098/rspb.2021.0548.
Sander, J.D., Joung, J.K., CRISPR-Cas systems for genome editing, regulation and targeting. Nat. Biotechnol. 32 (2014), 347–355, 10.1038/nbt.2842.
Schilder, R.J., Marden, J.H., Metabolic syndrome and obesity in an insect. Proceedings of the National Academy of Sciences of the United States of America, 103, 2006, 18805–18809, 10.1073/pnas.0603156103.
Service, P.M., Physiological mechanisms of increased stress resistance in Drosophila melanogaster selected for postponed senescence. Physiol. Zool. 60:3 (1987), 321–326 https://www.jstor.org/stable/30162285.
Sheng, S., Zhang, X., Zheng, Y., Wang, J., Zhou, Y., et al. Effect of six sugars on the longevity, oviposition performance and nutrition accumulation in an endoparasitoid, Meteorus pulchricornis (Hymenoptera: braconidae). J. Asia Pac. Entomol. 22 (2019), 263–268, 10.1016/j.aspen.2019.01.010.
Shirazi, F., Farmakiotis, D., Yan, Y., Albert, N., Do, K.A., et al. Diet modification and metformin have a beneficial effect in a fly model of obesity and mucormycosis. PLoS One, 9(9), 2014, 10.1371/journal.pone.0108635.
Sinclair, B.J., Marshall, K.E., The many roles of fats in overwintering insects. J. Exp. Biol., 121, 2018, jeb161836, 10.1242/jeb.161836.
Soulages, J.L., Wu, Z., Firdaus, S.J., Mahalingam, R., Arrese, E.L., Monoacylglycerol and diacylglycerol acyltransferases and the synthesis of neutral glycerides in Manduca sexta. Insect Biochem. Mol. Biol. 62 (2015), 194–210, 10.1016/j.ibmb.2014.09.007.
Souza, I.L., Marucci, R.C., Silveira, L.C.P., de Paulo, N.C.P., Lee, J.C., Effects of marigold on the behavior, survival and nutrient reserves of Aphidius Platensis. BioControl 63 (2018), 543–553, 10.1007/s10526-018-9882-8.
Stanley, D., Kim, Y., Prostaglandins and other eicosanoids in insects: biosynthesis and biological actions. Front. Physiol., 9, 2019, 1927, 10.3389/fphys.2018.01927.
Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J., de Renobales, M., Fatty acids in insects: composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 9:1 (1988), 1–33, 10.1002/arch.940090102.
Taylor, E.E., King, B.H., Burgess, E.R., Diet and nutrition of adult Spalangia cameroni (Hymenoptera: pteromalidae), a parasitoid of filth flies. Environ. Entomol., 2022, 1–12, 10.1093/ee/nvab113.
Thompson, S.N., Barlow, J.S., Synthesis of fatty acids by the parasite Exeristes comstockii (Hymenop.) and two hosts, Galleria mellonella (Lep.) and Lucilia sericata (Dip.). Can. J. Zool. 50 (1972), 1105–1110.
Toprak, U., Hegedus, D., Doğan, C., Güney, G., A journey into the world of insect lipid metabolism. Arch. Insect Biochem. Physiol. 104 (2020), 1–67, 10.1002/arch.21682.
Toth, A.L., Kantarovich, S., Meisel, A.F., Robinson, G.E., Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. 208:24 (2005), 4641–4649, 10.1242/jeb.01956.
Visser, B., Alborn, H.T., Rondeaux, S., Haillot, M., Hance, T., et al. Phenotypic plasticity explains apparent reverse evolution of fat synthesis in parasitic wasps. Sci. Rep., 11, 2021, 7751, 10.1038/s41598-021-86736-8.
Visser, B., van Dooremalen, C., Vázquez Ruiz, A., Ellers, J., Fatty acid composition remains stable across trophic levels in a gall wasp community. Physiol. Entomol. 38 (2013), 306–312, 10.1111/phen.12035.
Visser, B., Ellers, J., Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. J. Insect Physiol. 54:9 (2008), 1315–1322, 10.1016/j.jinsphys.2008.07.014.
Visser, B., Hance, T., Noël, C., Pels, C., Kimura, M.T., et al. Variation in lipid synthesis, but genetic homogeneity, among Leptopilina parasitic wasp populations. Ecol. Evol. 8 (2018), 7355–7364, 10.1002/ece3.4265.
Visser, B., Le Lann, C., den Blanken, F.J., Harvey, J.A., van Alphen, J.J.M., et al. Loss of lipid synthesis as an evolutionary consequence of a parasitic lifestyle. Proceedings of the National Academy of Sciences, 107, 2010, 8677–8682, 10.1073/pnas.1001744107.
Visser, B., Roelofs, D., Hahn, D.A., Teal, P.E.A., Mariën, J., et al. Transcriptional changes associated with lack of lipid synthesis in parasitoids. Genome Biol. Evol.(8), 2012, 10.1093/gbe/evs065.
Visser, B., Willett, D.S., Harvey, J.A., Alborn, H.T., Concurrence in the ability for lipid synthesis between life stages in insects. R. Soc. Open Sci., 4, 2017, 160815, 10.1098/rsos.160815.
Votruba, S.B., Zeddun, S.M., Schoeller, D.A., Validation of deuterium labeled fatty acids for the measurement of dietary fat oxidation: a method for measuring fat-oxidation in free-living subjects. Int. J. Obes. 25 (2001), 1240–1245, 10.1038/sj.ijo.0801672.
Walkowiak-Nowicka, K., Chowański, S., Urbański, A., Marciniak, P., Insects as a new complex model in hormonal basis of obesity. IJMS, 22(20), 2021, 11066, 10.3390/ijms222011066.
Wallace, M., Green, C.R., Roberts, L.S., Lee, Y.M., McCarville, J.L., et al. Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues. Nat. Chem. Biol. 14 (2018), 1021–1031, 10.1038/s41589-018-0132-2.
Wang, W., Lu, S.L., Liu, W.X., Cheng, L.S., Zhang, Y.B., et al. Effects of five naturally occurring sugars on the longevity, oogenesis, and nutrient accumulation pattern in adult females of the synovigenic parasitoid Neochrysocharis formosa (Hymenoptera: eulophidae). Neotrop. Entomol. 43:6 (2014), 564–573, 10.1007/s13744-014-0247-4.
Wang, J., Shen, L.W., Xing, X.R., Xie, Y.Q., Li, Y.J., et al. Lipid dynamics, identification, and expression patterns of fatty acid synthase genes in an endoparasitoid, Meteorus pulchricornis (Hymenoptera: braconidae). Int. J. Mol. Sci. 21 (2020), 1–14, 10.3390/ijms21176228.
Weber, D., Egan, P.A., Muola, A., Ericson, L.E., Stenberg, J.A., Plant resistance does not compromise parasitoid-based biocontrol of a strawberry pest. Sci. Rep., 10(1), 2020, 10.1038/s41598-020-62698-1.
Werren, J.H., Richards, S., Desjardins, C.A., Niehuis, O., Gadau, J., et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327 (2010), 343–348, 10.1126/science.1178028.
Wessells, R.J., Bodmer, R., Screening assay for heart function mutants in Drosophila. BioTechniques 37 (2004), 58–66, 10.2144/04371ST01.
Wessells, R.J., Fitzgerald, E., Cypser, J.R., Tatar, M., Bodmer, R., Insulin regulation of heart function in aging fruit flies. Nat. Genet. 36:12 (2004), 1275–1281, 10.1038/ng1476.
Wessels, F.J., Hahn, D.A., Carbon 13 discrimination during lipid biosynthesis varies with dietary concentration of stable isotopes: implications for stable isotope analyses. Funct. Ecol. 24 (2010), 1017–1022, 10.1111/j.1365-2435.2010.01716.x.
Williams, C.M., Thomas, R.H., Macmillan, H.A., Marshall, K.E., Sinclair, B.J., Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. J. Insect Physiol. 57 (2011), 1602–1613, 10.1016/j.jinsphys.2011.08.008.
Wood, R., Harlow, R.D., Lambremont, E.N., GLC analysis of Heliothis virescens triglycerides at various metamorphic stages. Lipids 4 (1969), 159–162, 10.1007/BF02531937.
Zhang, Y.B., Liu, W.X., Wang, W., Wan, F.H., Li, Q., Lifetime gains and patterns of accumulation and mobilization of nutrients in females of the synovigenic parasitoid, Diglyphus isaea Walker (Hymenoptera: eulophidae), as a function of diet. J. Insect Physiol. 57:7 (2011), 1045–1052, 10.1016/j.jinsphys.2011.05.002.