Crystallographic directions; Electro-thermal stress; High current densities; Intermediate phasis; Local temperature; MgO substrate; Oxygen ordering; Principal axis; Vacancy migration; YBa2Cu3O7-δ; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] We experimentally investigate the displacement of oxygen vacancies at high current densities in highly untwinned YBa2Cu3O7-δ films grown on top of MgO substrates. Transport bridges oriented along the YBa2Cu3O7-δ crystallographic directions [100] (a axis), [010] (b axis), and [110] (45∘ from principal axes) reveal that the onset of vacancy migration is mainly determined by the local temperature (or equivalently by the dissipated power) rather than the associated activation energy. Exceeding this threshold value, a clear directional migration proceeds as evidenced by optical microscopy. Concomitant electrotransport measurements show that an intermediate phase, characterized by a decrease in resistivity, precedes long-range migration of vacancies. We numerically demonstrate that this intermediate phase consists of a homogenization of the oxygen distribution along the transport bridge, a phenomenon strongly dependent on the activation energy and the initial degree of disorder. These findings provide some important clues to determine the level of order/disorder in YBa2Cu3O7-δ films based on electric transport measurements.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Marinkovic, Stefan ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Trabaldo, Edoardo; Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Chalmers University of Technology, Göteborg, Sweden
Collienne, Simon ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM)
Lombardi, Floriana; Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Chalmers University of Technology, Göteborg, Sweden
Bauch, Thilo; Department of Microtechnology and Nanoscience, Quantum Device Physics Laboratory, Chalmers University of Technology, Göteborg, Sweden
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Language :
English
Title :
Oxygen ordering in untwinned YBa2Cu3 O7-δ films driven by electrothermal stress
F.R.S.-FNRS - Fonds de la Recherche Scientifique Sverige Vetenskapsrådet
Funding text :
This work was supported by the Fonds de la Recherche Scientifique-FNRS under Grant No. U.N027.18, the COST action SUPERQUMAP (Grant No. CA 21144), the Swedish Research Council under the Grants No. 2020-05184 VR and No. 2018-04658 VR. The work of A.V.S. was partially supported by Grants No. CDR J.0151.19 and No. PDR T.0204.21 of the F.R.S.-FNRS. S.M. acknowledges support from F.R.S.-FNRS Grant No. FC 38531 (Research Fellowship ASP).
A. Palau, A. Fernández-Rodríguez, J. C. Gonzalez-Rosillo, X. Granados, M. Coll, B. Bozzo, R. Ortega-Hernandez, J. Suñé, N. Mestres, X. Obradors, and T. Puig, Electrochemical tuning of metal insulator transition and nonvolatile resistive switching in superconducting films, ACS Appl. Mater. Int. 10, 30522 (2018) AAMICK 1944-8244 10.1021/acsami.8b08042.
A. S. Dhoot, S. C. Wimbush, T. Benseman, J. L. MacManus-Driscoll, J. R. Cooper, and R. H. Friend, Increased (Equation presented) in electrolyte-gated cuprates, Adv. Mater. 22, 2529 (2010) ADVMEW 0935-9648 10.1002/adma.200904024.
L. Bégon-Lours, V. Rouco, A. Sander, J. Trastoy, R. Bernard, E. Jacquet, K. Bouzehouane, S. Fusil, V. Garcia, A. Barthélémy, M. Bibes, J. Santamaría, and J. E. Villegas, High-Temperature-Superconducting Weak Link Defined by the Ferroelectric Field Effect, Phys. Rev. Appl. 7, 064015 (2017) PRAHB2 2331-7019 10.1103/PhysRevApplied.7.064015.
P. Gao, Z. Kang, W. Fu, W. Wang, X. Bai, and E. Wang, Electrically driven redox process in cerium oxides, J. Am. Chem. Soc. 132, 4197 (2010) JACSAT 0002-7863 10.1021/ja9086616.
E. Robens, R. Rauschen, J. Kaub, J. P. Parras, D. Kemp, C. L. Freeman, and R. A. D. Souza, Perovskite crystal symmetry and oxygen-ion transport: A molecular-dynamics study of perovskite, J. Mater. Chem. A 10, 2388 (2022) JMCAET 2050-7496 10.1039/D1TA06293J.
V. V. Kharton, F. M. Marques, and A. Atkinson, Transport properties of solid oxide electrolyte ceramics: A brief review, Solid State Ionics 174, 135 (2004) SSIOD3 0167-2738 10.1016/j.ssi.2004.06.015.
E. Trabaldo, A. Garibaldi, F. Lombardi, and T. Bauch, Electromigration tuning of the voltage modulation depth in (Equation presented) nanowire-based squids, Supercond. Sci. Techol. 34, 104001 (2021) SUSTEF 0953-2048 10.1088/1361-6668/ac1c15.
X. D. Baumans, J. Lombardo, J. Brisbois, G. Shaw, V. S. Zharinov, G. He, H. Yu, J. Yuan, B. Zhu, K. Jin, R. B. Kramer, J. V. de Vondel, and A. V. Silhanek, Healing effect of controlled anti-electromigration on conventional and high-(Equation presented) superconducting nanowires, Small 13, 1700384 (2017) SMALBC 1613-6810 10.1002/smll.201700384.
S. Marinković, A. Fernández-Rodríguez, S. Collienne, S. B. Alvarez, S. Melinte, B. Maiorov, G. Rius, X. Granados, N. Mestres, A. Palau, and A. V. Silhanek, Direct visualization of current-stimulated oxygen migration in (Equation presented) thin films, ACS Nano 14, 11765 (2020) ANCAC3 1936-0851 10.1021/acsnano.0c04492.
L. Balcells, L. Peña, R. Galceran, A. Pomar, B. Bozzo, Z. Konstantinovic, F. Sandiumenge, and B. Martinez, Electroresistance and joule heating effects in manganite thin films, J. Appl. Phys. 113, 073703 (2013) JAPIAU 0021-8979 10.1063/1.4792222.
E. Trabaldo, A. Kalaboukhov, R. Arpaia, E. Wahlberg, F. Lombardi, and T. Bauch, Mapping the Phase Diagram of a (Equation presented) Nanowire Through Electromigration, Phys. Rev. Appl. 17, 024021 (2022) 2331-7019 10.1103/PhysRevApplied.17.024021.
R. Arpaia, E. Andersson, A. Kalaboukhov, E. Schröder, E. Trabaldo, R. Ciancio, G. DraŽić, P. Orgiani, T. Bauch, and F. Lombardi, Untwinned (Equation presented) thin films on (Equation presented) substrates: a platform to study strain effects on the local orders in cuprates, Phys. Rev. Mater. 3, 114804 (2019) PRMHBS 2475-9953 10.1103/PhysRevMaterials.3.114804.
S. Nawaz, R. Arpaia, F. Lombardi, and T. Bauch, Microwave Response of Superconducting (Equation presented) Nanowire Bridges Sustaining the Critical Depairing Current: Evidence of (Equation presented)-like Behavior, Phys. Rev. Lett. 110, 167004 (2013) PRLTAO 0031-9007 10.1103/PhysRevLett.110.167004.
S. Nawaz, R. Arpaia, T. Bauch, and F. Lombardi, Approaching the theoretical depairing current in (Equation presented) nanowires, Physica C 495, 33 (2013) PHYCE6 0921-4534 10.1016/j.physc.2013.07.011.
J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtree, H. Claus, and W. K. Kwok, Structural properties of oxygen-deficient (Equation presented), Phys. Rev. B 41, 1863 (1990) PRBMDO 1098-0121 10.1103/PhysRevB.41.1863.
S. J. Rothman, J. L. Routbort, and J. E. Baker, Tracer diffusion of oxygen in (Equation presented), Phys. Rev. B 40, 8852 (1989) PRBMDO 1098-0121 10.1103/PhysRevB.40.8852.
K. Semba and A. Matsuda, Superconductor-to-Insulator Transition and Transport Properties of Underdoped (Equation presented) Crystals, Phys. Rev. Lett. 86, 496 (2001) PRLTAO 0031-9007 10.1103/PhysRevLett.86.496.
COMSOL AB, Stockholm, Sweden, comsol multiphysics v.5.4.
M. Nahum, S. Verghese, L. Richards, and K. Char, Thermal boundary resistance for (Equation presented) films, Appl. Phys. Lett. 59, 2034 (1991) APPLAB 0003-6951 10.1063/1.106123.
D. Gupta, W. R. Donaldson, K. Koitkamp, and A. M. Kadin, Optically triggered switching of optically thick (Equation presented) films, IEEE Trans. Appl. Supercond. 3, 2895 (1993) ITASE9 1558-2515 10.1109/77.234005.
A. M. Hofmeister, Thermal diffusivity and thermal conductivity of single-crystal (Equation presented) and (Equation presented) and related compounds as a function of temperature, Phys. Chem. Miner. 41, 361 (2014) PCMIDU 0342-1791 10.1007/s00269-014-0655-3.
A. Knizhnik, G. E. Shter, G. S. Grader, G. M. Reisner, and Y. Eckstein, Interrelation of preparation conditions, morphology, chemical reactivity and homogeneity of ceramic (Equation presented), Physica C 400, 25 (2003) PHYCE6 0921-4534 10.1016/S0921-4534(03)01311-X.
I. Grekhov, L. Delimova, I. Liniichuk, A. Lyublinsky, I. Veselovsky, A. Titkov, M. Dunaevsky, and V. Sakharov, Growth mode study of ultrathin (Equation presented) films on (Equation presented) buffer, Physica C 324, 39 (1999) PHYCE6 0921-4534 10.1016/S0921-4534(99)00423-2.
N. E. Phillips, J. P. Emerson, R. A. Fisher, J. E. Gordon, B. F. Woodfield, and D. A. Wright, Specific heat of (Equation presented), J. Supercond. 7, 251 (1994) JOUSEH 0896-1107 10.1007/BF00730406.
M. Ikebe, H. Fujishiro, T. Naito, M. Matsukawa, and K. Noto, Anisotropic thermal diffusivity and conductivity of (Equation presented)(123) and (Equation presented)(211) mixed crystals. ii, Jpn. J. Appl. Phys. 33, 6157 (1994) 10.1143/JJAP.33.6157.
S. Collienne, S. Marinković, A. Fernández-Rodríguez, N. Mestres, A. Palau, and A. V. Silhanek, Electrically driven oxygen vacancy aggregation and displacement in (Equation presented) films, Adv. Electron. Mater. 8, 2101290 (2022) AEMDBW 2199-160X 10.1002/aelm.202101290.
S. J. Rothman, J. L. Routbort, U. Welp, and J. E. Baker, Anisotropy of oxygen tracer diffusion in single-crystal (Equation presented), Phys. Rev. B 44, 2326 (1991) PRBMDO 1098-0121 10.1103/PhysRevB.44.2326.
T. A. Friedmann, M. W. Rabin, J. Giapintzakis, J. P. Rice, and D. M. Ginsberg, Direct measurement of the anisotropy of the resistivity in the (Equation presented) plane of twin-free, single-crystal, superconducting (Equation presented), Phys. Rev. B 42, 6217 (1990) PRBMDO 1098-0121 10.1103/PhysRevB.42.6217.
B. H. Moeckly, D. K. Lathrop, and R. A. Buhrman, Electromigration study of oxygen disorder and grain-boundary effects in (Equation presented) thin films, Phys. Rev. B 47, 400 (1993) PRBMDO 1098-0121 10.1103/PhysRevB.47.400.
J. Kircher, M. K. Kelly, S. Rashkeev, M. Alouani, D. Fuchs, and M. Cardona, Anisotropy and oxygen-stoichiometry dependence ofthe dielectric tensor of (Equation presented), Phys. Rev. B 44, 217 (1991) PRBMDO 1098-0121 10.1103/PhysRevB.44.217.