alginate oligosaccharides; boar; gut microbiota; in vitro fertilization; metabolism; sperm concentration; sperm motility; Microbiology; Microbiology (medical)
Abstract :
[en] Alginate oligosaccharides (AOS), natural polymers from brown seaweeds (such as Laminaria japonica, Undaria pinnatifida, and Sargassum fusiforme), have been reported to possess many beneficial advantages for health. In the current study, after 9 weeks of dietary supplementation, AOS 10 mg/kg group (AOS 10) group increased boar sperm motility from 87.8% to 93.5%, p < 0.05. Moreover, AOS10 increased the relative abundances of Bifidobacterium, Coprococcus, Butyricicoccus (1.3-2.3-fold; p < 0.05) to increase the beneficial blood and sperm metabolites (1.2-1.6-fold; p < 0.05), and important sperm proteins such as gelsolin, Zn-alpha2 glycoprotein, Cation Channel Sperm-Associated Protein, outer dense fiber of sperm tails, etc. (1.5-2.2-fold; p < 0.05). AOS had a long-term beneficial advantage on boar semen quality by the increase in semen volume (175 vs. 160 ml/ejaculation, p < 0.05). AOS may be used as dietary additives for improving semen quality.
Disciplines :
Agriculture & agronomy
Author, co-author :
Han, Hui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Zhou, Yexun ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Xiong, Bohui; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Zhong, Ruqing; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Jiang, Yue; State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
Sun, Haiqing; YangXiang Joint Stock Company, Guigang, China
Tan, Jiajian; YangXiang Joint Stock Company, Guigang, China
Zhang, Bin; Qingdao BZ Oligo Biotech Co., Ltd, Qingdao, China
Guan, Chang; Qingdao BZ Oligo Biotech Co., Ltd, Qingdao, China
NSCF - National Natural Science Foundation of China
Funding text :
We thank the investigators and staff of the Beijing Genomics Institute (BGI) and Shanghai LUMING Biotechnology CO., LCD for technical support.This study was supported by the National Natural Science Foundation of China (32070536 and 31772408 to YZa; 31672428 to HZ).
Araujo A. B. Wittert G. A. (2011). Endocrinology of the aging male. Best Pract. Res. Clin. Endocrinol. Metab. 25, 303–319. doi: 10.1016/j.beem.2010.11.004, PMID: 21397200
Bouter K. E. van Raalte D. H. Groen A. K. Nieuwdorp M. (2017). Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 152, 1671–1678. doi: 10.1053/j.gastro.2016.12.048, PMID: 28192102
Caporaso J. G. Kuczynski J. Stombaugh J. Bittinger K. Bushman F. D. Costello E. K. et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. doi: 10.1038/nmeth.f.303, PMID: 20383131
Cheng C. Y. Wong E. W. Yan H. H. Mruk D. D. (2010). Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances. Mol. Cell. Endocrinol. 315, 49–56. doi: 10.1016/j.mce.2009.08.004, PMID: 19682538
Ciereszko A. Ottobre J. S. Glogowski J. (2000). Effects of season and breed on sperm acrosin activity and semen quality of boars. Anim. Reprod. Sci. 64, 89–96. doi: 10.1016/S0378-4320(00)00194-9, PMID: 11078969
Cross N. L. (1998). Role of cholesterol in sperm capacitation. Biol. Reprod. 59, 7–11. doi: 10.1095/biolreprod59.1.7
Dai Z. Wu Z. Hang S. Zhu W. Wu G. (2015). Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol. Hum. Reprod. 21, 389–409. doi: 10.1093/molehr/gav003, PMID: 25609213
DeSantis T. Z. Hugenholtz P. Larsen N. Rojas M. Brodie E. L. Keller K. et al. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072. doi: 10.1128/AEM.03006-05, PMID: 16820507
Dong H. Wu D. Xu S. Li Q. Fang Z. Che L. et al. (2016). Effect of dietary supplementation with amino acids on boar sperm quality and fertility. Anim. Reprod. Sci. 172, 182–189. doi: 10.1016/j.anireprosci.2016.08.003, PMID: 27509874
Ergün A. Köse S. K. Aydos K. Ata A. Avci A. (2007). Correlation of seminal parameters with serum lipid profile and sex hormones. Arch. Androl. 53, 21–23. doi: 10.1080/01485010600888961, PMID: 17364460
Finkelstein M. Megnagi B. Ickowicz D. Breitbart H. (2013). Regulation of sperm motility by PIP2(4,5) and actin polymerization. Dev. Biol. 381, 62–72. doi: 10.1016/j.ydbio.2013.06.014, PMID: 23791551
Guo J. J. Ma L. L. Shi H. T. Zhu J. B. Wu J. Ding Z. W. et al. (2016). Alginate oligosaccharide prevents acute doxorubicin cardiotoxicity by suppressing oxidative stress and endoplasmic reticulum-mediated apoptosis. Mar. Drugs 14:231. doi: 10.3390/md14120231, PMID: 27999379
Guo L. Wu Y. Wang C. Wei H. Tan J. Sun H. et al. (2020). Gut microbiological disorders reduce semen utilization rate in Duroc boars. Front. Microbiol. 11:581926. doi: 10.3389/fmicb.2020.581926, PMID: 33133051
Han Z. L. Yang M. Fu X. D. Chen M. Su Q. Zhao Y. H. et al. (2019). Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar. Drugs 17:E173. doi: 10.3390/md17030173
Hu Y. Feng Z. Feng W. Hu T. Guan H. Mao Y. (2019). AOS ameliorates monocrotaline-induced pulmonary hypertension by restraining the activation of P-selectin/p38MAPK/NF-κB pathway in rats. Biomed. Pharmacother. 109, 1319–1326. doi: 10.1016/j.biopha.2018.10.109, PMID: 30551382
Huang Y. H. Lo L. L. Liu S. H. Yang T. S. (2010). Age-related changes in semen quality characteristics and expectations of reproductive longevity in Duroc boars. Anim. Sci. J. 81, 432–437. doi: 10.1111/j.1740-0929.2010.00753.x, PMID: 20662811
Kim N. Nakamura H. Masaki H. Kumasawa K. Hirano K. I. Kimura T. (2017). Effect of lipid metabolism on male fertility. Biochem. Biophys. Res. Commun. 485, 686–692. doi: 10.1016/j.bbrc.2017.02.103
Lee K. H. (2012). Ectopic expression of Cenexin1 S796A mutant in ODF2(+/−) knockout background causes a sperm tail development defect. Dev. Reprod. 16, 363–370. doi: 10.12717/DR.2012.16.4.363, PMID: 25949111
Liu R. Hong J. Xu X. Feng Q. Zhang D. Gu Y. et al. (2017b). Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868. doi: 10.1038/nm.4358, PMID: 28628112
Liu Y. Qu F. Cao X. Chen G. Guo Q. Ying X. et al. (2012). Con A-binding protein Zn-alpha2-glycoprotein on human sperm membrane is related to acrosome reaction and sperm fertility. Int. J. Androl. 35, 145–157. doi: 10.1111/j.1365-2605.2011.01195.x, PMID: 21790656
Liu J. Yang S. Li X. Yan Q. Reaney M. J. T. Jiang Z. (2019). Alginate oligosaccharides: production, biological activities, and potential applications. Compr. Rev. Food Sci. Food Saf. 18, 1859–1881. doi: 10.1111/1541-4337.12494, PMID: 33336967
Liu Q. Zhou Y. Duan R. Wei H. Peng J. Jiang S. (2017a). Dietary n-6:n-3 ratio and vitamin E improve motility characteristics in association with membrane properties of boar spermatozoa. Asian J. Androl. 19, 223–229. doi: 10.4103/1008-682X.170446, PMID: 26763547
Louis G. F. Lewis A. J. Weldon W. C. Miller P. S. Kittok R. J. Stroup W. W. (1994). The effect of protein intake on boar libido, semen characteristics, and plasma hormone concentrations. J. Anim. Sci. 72, 2038–2050. doi: 10.2527/1994.7282038x, PMID: 7982833
Lu J. C. Jing J. Yao Q. Fan K. Wang G. H. Feng R. X. et al. (2016). Relationship between lipids levels of serum and seminal plasma and semen parameters in 631 Chinese subfertile men. PLoS One 11:e0146304. doi: 10.1371/journal.pone.0146304, PMID: 26726884
Magoč T. Salzberg S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. doi: 10.1093/bioinformatics/btr507, PMID: 21903629
Maqdasy S. Baptissart M. Vega A. Baron S. Lobaccaro J. M. Volle D. H. (2013). Cholesterol and male fertility: what about orphans and adopted? Mol. Cell. Endocrinol. 368, 30–46. doi: 10.1016/j.mce.2012.06.011, PMID: 22766106
Midzak A. S. Chen H. Papadopoulos V. Zirkin B. R. (2009). Leydig cell aging and the mechanisms of reduced testosterone synthesis. Mol. Cell. Endocrinol. 299, 23–31. doi: 10.1016/j.mce.2008.07.016, PMID: 18761053
Moriya C. Shida Y. Yamane Y. Miyamoto Y. Kimura M. Huse N. et al. (2013). Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clin. Exp. Hypertens. 35, 607–613. doi: 10.3109/10641963.2013.776568, PMID: 23484864
Murphy E. M. Stanton C. Brien C. O. Murphy C. Holden S. Murphy R. P. et al. (2017). The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility. Theriogenology 90, 78–87. doi: 10.1016/j.theriogenology.2016.11.008, PMID: 28166992
Park H. J. Ahn J. M. Park R. M. Lee S. H. Sekhon S. S. Kim S. Y. et al. (2016). Effects of alginate oligosaccharide mixture on the bioavailability of lysozyme as an antimicrobial agent. J. Nanosci. Nanotechnol. 16, 1445–1449. doi: 10.1166/jnn.2016.10757, PMID: 27433602
Pichardo A. I. Tlachi-López J. L. Jiménez-Trejo F. Fuentes-Farías A. L. Báez-SaldaN A. Molina-Cerón M. L. et al. (2011). Increased serotonin concentration and tryptophan hydroxylase activity in reproductive organs of copulator males: a case of adaptive plasticity. Adv. Biosci. Biotechnol. 02, 75–84. doi: 10.4236/abb.2011.22012
Pritchard M. F. Powell L. C. Jack A. A. Powell K. Beck K. Florance H. et al. (2017). A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness. Antimicrob. Agents Chemother. 61, e00762–e00717. doi: 10.1128/AAC.00762-17
Rato L. Alves M. G. Socorro S. Duarte A. I. Cavaco J. E. Oliveira P. F. (2012). Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 9, 330–338. doi: 10.1038/nrurol.2012.77
Rato L. Socorro S. Cavaco J. Oliveira P. F. (2010). Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J. Membr. Biol. 236, 215–224. doi: 10.1007/s00232-010-9294-x
Redel B. K. Spate L. D. Prather R. S. (2019). In vitro maturation, fertilization, and culture of pig oocytes and embryos. Methods Mol. Biol. 2006, 93–103. doi: 10.1007/978-1-4939-9566-0_6
Ren B. Cheng X. Wu D. Xu S. Y. Che L. Q. Fang Z. F. et al. (2015). Effect of different amino acid patterns on semen quality of boars fed with low-protein diets. Anim. Reprod. Sci. 161, 96–103. doi: 10.1016/j.anireprosci.2015.08.010, PMID: 26364704
Ruvinov E. Cohen S. (2016). Alginate biomaterial for the treatment of myocardial infarction: progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv. Drug Deliv. Rev. 96, 54–76. doi: 10.1016/j.addr.2015.04.021, PMID: 25962984
Singh M. Mollier R. T. Sharma R. Kadirvel G. Doley S. Sanjukta R. K. et al. (2021). Dietary flaxseed oil improve boar semen quality, antioxidant status and in-vivo fertility in humid sub-tropical region of north East India. Theriogenology 159, 123–131. doi: 10.1016/j.theriogenology.2020.10.023, PMID: 33137633
Sun Z. Y. Yu S. Tian Y. Han B. Q. Zhao Y. Li Y. Q. et al. (2022). Chestnut polysaccharides restore impaired spermatogenesis by adjusting gut microbiota and the intestinal structure. Food Funct. 13, 425–436. doi: 10.1039/D1FO03145G, PMID: 34913451
Sun X. H. Zhu Y. Y. Wang L. Liu H. L. Ling Y. Li Z. L. et al. (2017). The Catsper channel and its roles in male fertility: a systematic review. Reprod. Biol. Endocrinol. 15:65. doi: 10.1186/s12958-017-0281-2, PMID: 28810916
Tajima S. Inoue H. Kawada A. Ishibashi A. Takahara H. Hiura N. (1999). Alginate oligosaccharides modulate cell morphology, cell proliferation and collagen expression in human skin fibroblasts in vitro. Arch. Dermatol. Res. 291, 432–436. doi: 10.1007/s004030050434, PMID: 10482014
Tsakmakidis I. A. Khalifa T. A. A. Boscos C. M. (2012). Age-related changes in quality and fertility of porcine semen. Biol. Res. 45, 381–386. doi: 10.4067/S0716-97602012000400009, PMID: 23558995
Tsakmakidis I. A. Lymberopoulos A. G. Khalifa T. A. (2010). Relationship between sperm quality traits and field-fertility of porcine semen. J. Vet. Sci. 11, 151–154. doi: 10.4142/jvs.2010.11.2.151, PMID: 20458156
Tusi S. K. Khalaj L. Ashabi G. Kiaei M. Khodagholi F. (2011). Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials 32, 5438–5458. doi: 10.1016/j.biomaterials.2011.04.024, PMID: 21543116
Ueno M. Tamura Y. Toda N. Yoshinaga M. Terakado S. Otsuka K. et al. (2012). Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clin. Exp. Hypertens. 34, 305–310. doi: 10.3109/10641963.2011.577484, PMID: 22690942
Wan J. Zhang J. Chen D. Yu B. He J. (2017). Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs. Anim. Feed Sci. Technol. 234, 118–127. doi: 10.1016/j.anifeedsci.2017.09.006
Wan J. Zhang J. Chen D. Yu B. Huang Z. Mao X. et al. (2018b). Alginate oligosaccharide enhances intestinal integrity of weaned pigs through altering intestinal inflammatory responses and antioxidant status. RSC Adv. 8, 13482–13492. doi: 10.1039/C8RA01943F, PMID: 35542522
Wan J. Zhang J. Chen D. Yu B. Mao X. Zheng P. et al. (2018a). Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs. J. Anim. Sci. Biotechnol. 9:58. doi: 10.1186/s40104-018-0273-x, PMID: 30128148
WHO (2010). WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th edition. Cambridge, UK: Cambridge University Press.
Wilson M. E. Rozeboom K. J. Crenshaw T. D. (2004). Boar nutrition for optimum sperm production. Adv. Pork Prod. 15, 295–306.
Wolf J. (2009). Genetic parameters for semen traits in AI boars estimated from data on individual ejaculates. Reprod. Domest. Anim. 44, 338–344. doi: 10.1111/j.1439-0531.2008.01083.x, PMID: 19323799
Wu Y. H. Guo L. L. Liu Z. H. Wei H. K. Zhou Y. F. Tan J. J. et al. (2019b). Microelements in seminal and serum plasma are associated with fresh semen quality in Yorkshire boars. Theriogenology 132, 88–94. doi: 10.1016/j.theriogenology.2019.04.002, PMID: 31004878
Wu Y. H. Lai W. Liu Z. H. Wei H. K. Zhou Y. F. Tan J. J. et al. (2019a). Serum and seminal plasma element concentrations in relation to semen quality in Duroc boars. Biol. Trace Elem. Res. 189, 85–94. doi: 10.1007/s12011-018-1459-y, PMID: 30069693
Yang Y. Ma Z. Yang G. Wan J. Li G. Du L. et al. (2017). Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microrna-29b in aneurysm patients after endovascular aortic repair. Drug Des. Devel. Ther. 11, 2565–2579. doi: 10.2147/DDDT.S140206, PMID: 28919708
Yeste M. Sancho S. Briz M. Pinart E. Bussalleu E. Bonet S. (2010). A diet supplemented with L-carnitine improves the sperm quality of Pietrain but not of Duroc and large white boars when photoperiod and temperature increase. Theriogenology 73, 577–586. doi: 10.1016/j.theriogenology.2009.10.013, PMID: 20022096
Yu S. Zhao Y. Zhang F. L. Li Y. Q. Shen W. Sun Z. Y. (2020). Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging 12, 11431–11445. doi: 10.18632/aging.103205, PMID: 32568099
Zapata-Carmona H. Soriano-Úbeda C. París-Oller E. Matás C. (2020). Periovulatory oviductal fluid decreases sperm protein kinase A activity, tyrosine phosphorylation, and in vitro fertilization in pig. Andrology 8, 756–768. doi: 10.1111/andr.12751, PMID: 31872543
Zhang P. Liu J. Xiong B. Zhang C. Kang B. Gao Y. et al. (2020). Microbiota from alginate oligosaccharide dosed mice successfully mitigated small intestinal mucositis. Microbiome 8:112. doi: 10.1186/s40168-020-00886-x, PMID: 32711581
Zhang W. Zhao Y. Zhang P. Hao Y. Yu S. Min L. et al. (2018). Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can be inheritable. Chemosphere 194, 147–157. doi: 10.1016/j.chemosphere.2017.11.164, PMID: 29202267
Zhang P. Zhao Y. Zhang H. Liu J. Feng Y. Yin S. et al. (2019). Low dose Chlorothalonil impairs mouse spermatogenesis through the intertwining of estrogen receptor pathways with histone and DNA methylation. Chemosphere 230, 384–395. doi: 10.1016/j.chemosphere.2019.05.029, PMID: 31112861
Zhao Y. Feng Y. Liu M. Chen L. Meng Q. Tang X. et al. (2020a). Single-cell RNA sequencing analysis reveals alginate oligosaccharides preventing chemotherapy-induced mucositis. Mucosal Immunol. 13, 437–448. doi: 10.1038/s41385-019-0248-z, PMID: 31900405
Zhao Y. Zhang P. Ge W. Feng Y. Li L. Sun Z. et al. (2020b). Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics 10, 3308–3324. doi: 10.7150/thno.43189, PMID: 32194870
Zhao Y. Zhang W. Liu X. Zhang P. Hao Y. Li L. et al. (2016). Hydrogen sulfide and/or ammonia reduces spermatozoa motility through AMPK/AKT related pathways. Sci. Rep. 6:37884. doi: 10.1038/srep37884, PMID: 27883089
Zhou J. Ji T. He H. Yin S. Liu X. Zhang X. et al. (2020). Induction of autophagy promotes porcine parthenogenetic embryo development under low oxygen conditions. Reprod. Fertil. Dev. 32, 657–666. doi: 10.1071/RD19322, PMID: 32317091
Zhou R. Shi X. Y. Gao Y. Cai N. Jiang Z. D. Xu X. (2015). Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells. J. Agric. Food Chem. 63, 160–168. doi: 10.1021/jf503548a, PMID: 25483391