Nature and Landscape Conservation; Ecology; Ecology, Evolution, Behavior and Systematics; european catfish; Genetic Diversity; Biological invasion
Abstract :
[en] Biological invasions are a major component of global change worldwide. But paradoxically,
an invasive species might also have threatened populations within its native range.
Designing efficient management policies is needed to prevent and mitigate range expansions
of invasive alien species (IAS) in non-native areas, while protecting them within their
native range. Characterizing genetic variation patterns for IAS populations and deciphering
the links between their native and introduced populations is helpful to (i) assess the genetic
state of both native and non-native populations, (ii) reveal potential invasion pathways, (iii)
define IAS management strategies in invaded areas, and (iv) identify native populations
requiring conservation measures. The European catfish (Silurus glanis) is the largest European
predatory fish. Introduced since the seventies from Eastern to Western Europe, it has
colonized many waterbodies. Yet, little is known about the genetic status of non-native
populations and the invasion pathways used by the species. Besides, some native populations
are threatened, requiring conservation actions. Here, we describe current patterns
of genetic variability of native and non-native S. glanis populations across Europe. Using
microsatellite markers, we first assessed genetic variation within and between native and
non-native populations. Second, we performed genetic clustering analyses to determine the
genetic structure of multiple catfish populations across Europe and highlight their potential
links. We revealed that native populations are more genetically diverse than non-native
populations, and highlight complex introduction pathways involving several independent
sources of introduction, which likely explain the invasion success of this large predatory
fish across western Europe.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Castagné, Paul
Paz-Vinas, Ivan
Boulêtreau, Stéphanie
Ferriol, Jessica
Loot, Géraldine
Veyssière, Charlotte
Arlinghaus, Robert
Britton, Robert
Chiarello, Marlène
García-Berthou, Emili
Horký, Pavel
Nicolas, Delphine
Nocita, Annamaria
Nordahl, Oscar
Ovidio, Michaël ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS)
FCT - Foundation for Science and Technology ARNET - Aquatic Research Network
Funding text :
Samples collected in Portugal and Romania were obtained from the FRISK (PTDC/AAGMAA/0350/2014) and the MEGAPREDATOR projects (PTDC/ASP-PES/4181/2021) funded by the Foundation for Science and Technology. Additional funds were received from the Foundation for Science and Technology through the strategic plan of the MARE—Marine and Environmental Sciences Centre (UIDB/04292/2020) and to the Associate Laboratory ARNET (LA/P/0069/2020). Filipe Ribeiro is funded
by the Foundation for Science and Technology through an individual contract (CEEC/0482/2020). Ivan Paz-Vinas is supported by the U.S. Geological Survey Powell Center for Synthesis and Analysis.
Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693. 10.1093/nar/25.22.4692 DOI: 10.1093/nar/25.22.4692
Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190. 10.1002/zoo.1430050212 DOI: 10.1002/zoo.1430050212
Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029. 10.1093/genetics/153.4.2013 DOI: 10.1093/genetics/153.4.2013
Belkhir K, Borsa, Chikhi, et al (1996) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B 57:289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI: 10.1111/j.2517-6161.1995.tb02031.x
Bergström K, Nordahl O, Söderling P et al (2022) Exceptional longevity in northern peripheral populations of Wels catfish (Silurus glanis). Sci Rep 12:8070. 10.1038/s41598-022-12165-w DOI: 10.1038/s41598-022-12165-w
Blackburn TM, Pyšek P, Bacher S et al (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. 10.1016/j.tree.2011.03.023 DOI: 10.1016/j.tree.2011.03.023
Blanchet S (2012) The use of molecular tools in invasion biology: an emphasis on freshwater ecosystems: using molecular tools in biological invasions. Fish Manage Ecol 19:120–132. 10.1111/j.1365-2400.2011.00832.x DOI: 10.1111/j.1365-2400.2011.00832.x
Boeseman, (1975) On the sheat fish of the Netherlands, Silurus glanis Linnaeus. Zoologische Bijdragen 17:48–62
Boulêtreau S, Santoul F (2016) The end of the mythical giant catfish. Ecosphere 7:e01606. 10.1002/ecs2.1606 DOI: 10.1002/ecs2.1606
Boulêtreau S, Gaillagot A, Carry L et al (2018) Adult Atlantic salmon have a new freshwater predator. PLoS ONE 13:e0196046. 10.1371/journal.pone.0196046 DOI: 10.1371/journal.pone.0196046
Boulêtreau S, Carry L, Meyer E et al (2020) High predation of native sea lamprey during spawning migration. Sci Rep 10:6122. 10.1038/s41598-020-62916-w DOI: 10.1038/s41598-020-62916-w
Boulêtreau S, Fauvel T, Laventure M et al (2021) “The giants’ feast”: predation of the large introduced European catfish on spawning migrating allis shads. Aquat Ecol 55:75–83. 10.1007/s10452-020-09811-8 DOI: 10.1007/s10452-020-09811-8
Britton JR, Davies GD (2006) First record of the white catfish Ameiurus catus in Great Britain. J Fish Biol 69:1236–1238. 10.1111/j.1095-8649.2006.01171.x DOI: 10.1111/j.1095-8649.2006.01171.x
Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279. 10.1086/284267 DOI: 10.1086/284267
Castaldelli G, Pluchinotta A, Milardi M et al (2013) Introduction of exotic fish species and decline of native species in the lower Po basin, north-eastern Italy. Aquat Conserv Mar Freshwat Ecosyst 23:405–417. 10.1002/aqc.2345 DOI: 10.1002/aqc.2345
Chiarello M, Paz-Vinas I, Veyssière C et al (2019) Environmental conditions and neutral processes shape the skin microbiome of European catfish (Silurus glanis) populations of Southwestern France. Environ Microbiol Rep 11:605–614. 10.1111/1758-2229.12774 DOI: 10.1111/1758-2229.12774
Copp GH, Robert Britton J, Cucherousset J et al (2009) Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish Fish 10:252–282. 10.1111/j.1467-2979.2008.00321.x DOI: 10.1111/j.1467-2979.2008.00321.x
Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014 DOI: 10.1093/genetics/144.4.2001
Cristescu ME (2015) Genetic reconstructions of invasion history. Mol Ecol 24:2212–2225. 10.1111/mec.13117 DOI: 10.1111/mec.13117
Cucherousset J, Horky P, Slavík O et al (2018) Ecology, behaviour and management of the European catfish. Rev Fish Biol Fisheries 28:177–190. 10.1007/s11160-017-9507-9 DOI: 10.1007/s11160-017-9507-9
Curto M, Morgado-Santos M, Alexandre CM et al (2022) Widespread hybridization between invasive bleak (Alburnus alburnus) and Iberian Chub (Squalius spp.): a neglected conservation threat. Fishes 7:247. 10.3390/fishes7050247 DOI: 10.3390/fishes7050247
Davies CE, ShellyHarding JPT et al (2004) Freshwater fishes in Britain, the species and their distribution. Aquaculture 245:331–332. 10.1016/j.aquaculture.2004.11.025 DOI: 10.1016/j.aquaculture.2004.11.025
De Kort H, Prunier JG, Ducatez S et al (2021) Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Commun 12:516. 10.1038/s41467-021-20958-2 DOI: 10.1038/s41467-021-20958-2
Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. 10.1111/j.1365-294X.2007.03538.x DOI: 10.1111/j.1365-294X.2007.03538.x
Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214. 10.1111/1755-0998.12157 DOI: 10.1111/1755-0998.12157
Doadrio, (2002) Atlas y Libro Rojo de los Peces Continentales de España. Dirección General de Conservación de la Naturaleza, Madrid
Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci U S A 101:975–979. 10.1073/pnas.0308064100 DOI: 10.1073/pnas.0308064100
Elvira B, Almodóvar A (2001) Freshwater fish introductions in Spain: facts and figures at the beginning of the 21st century. J Fish Biol 59:323–331. 10.1111/j.1095-8649.2001.tb01393.x DOI: 10.1111/j.1095-8649.2001.tb01393.x
Essl F, Lenzner B, Bacher S et al (2020) Drivers of future alien species impacts: an expert-based assessment. Glob Change Biol 26:4880–4893. 10.1111/gcb.15199 DOI: 10.1111/gcb.15199
Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130. 10.1111/j.1365-294X.2010.04773.x DOI: 10.1111/j.1365-294X.2010.04773.x
Ferreira M, Gago J, Ribeiro F (2019) Diet of European catfish in a newly invaded region. Fishes 4:58. 10.3390/fishes4040058 DOI: 10.3390/fishes4040058
Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biol Invasions 14:245–253. 10.1007/s10530-011-0064-1 DOI: 10.1007/s10530-011-0064-1
Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. 10.1534/genetics.108.092221 DOI: 10.1534/genetics.108.092221
Frankham R (1995) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–799. 10.1046/j.1523-1739.1995.09040792.x DOI: 10.1046/j.1523-1739.1995.09040792.x
Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. 10.1016/j.biocon.2005.05.002 DOI: 10.1016/j.biocon.2005.05.002
Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618. 10.1111/mec.13139 DOI: 10.1111/mec.13139
Frankham R, Bradshaw CJA, Brook BW (2014) 50/500 rules need upward revision to 100/1000–Response to Franklin et al. Biol Conserv 176:286. 10.1016/j.biocon.2014.05.006 DOI: 10.1016/j.biocon.2014.05.006
Freyhof J& K (2008) Silurus glanis. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T40713A10356149.en. Accessed on 07 April 2023.
Freyhof J, Brooks E (2011) European red list of freshwater fishes. Publications Office, LU
Gago J, Anastácio P, Gkenas C et al (2016) Spatial distribution patterns of the non-native European catfish, Silurus glanis, from multiple online sources—A case study for the River Tagus (Iberian Peninsula). Fish Manage Ecol 23:503–509. 10.1111/fme.12189 DOI: 10.1111/fme.12189
Gandolfi G, Giannini M (1979) On the occurrence of the wels, Silurus glanis, in the Po River (Osteichthyes Siluridae). Natura (milano). 70:3–6
Gelman A, Hill J (2006) Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press. https://www.cambridge.org/highereducation/books/data-analysis-using-regression-and-multilevel-hierarchical-models/32A29531C7FD730C3A68951A17C9D983. Accessed 23 Mar 2022
Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. 10.1214/ss/1177011136 DOI: 10.1214/ss/1177011136
Gillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Divers Distrib 15:784–795. 10.1111/j.1472-4642.2009.00591.x DOI: 10.1111/j.1472-4642.2009.00591.x
Gkenas C, Gago J, Mesquita N et al (2015) First record of Silurus glanis Linnaeus, 1758 in Portugal (Iberian Peninsula). J Appl Ichthyol. 10.1111/JAI.12806 DOI: 10.1111/JAI.12806
Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486. 10.1093/oxfordjournals.jhered.a111627 DOI: 10.1093/oxfordjournals.jhered.a111627
Hailer F, Helander B, Folkestad AO et al (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Let 2:316–319. 10.1098/rsbl.2006.0453 DOI: 10.1098/rsbl.2006.0453
Hostetler JA, Onorato DP, Jansen D, Oli MK (2013) A cat’s tale: the impact of genetic restoration on Florida panther population dynamics and persistence. J Anim Ecol 82:608–620. 10.1111/1365-2656.12033 DOI: 10.1111/1365-2656.12033
Hulme PE, Bacher S, Kenis M et al (2008) Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol 45:403–414. 10.1111/j.1365-2664.2007.01442.x DOI: 10.1111/j.1365-2664.2007.01442.x
Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584. 10.1016/j.tree.2012.07.001 DOI: 10.1016/j.tree.2012.07.001
Jensen MR, Knudsen SW, Munk P et al (2018) Tracing European eel in the diet of mesopelagic fishes from the Sargasso Sea using DNA from fish stomachs. Mar Biol 165:130. 10.1007/s00227-018-3390-3 DOI: 10.1007/s00227-018-3390-3
Jensen A, Lillie M, Bergström K et al (2021) Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish. Heredity 127:79–91. 10.1038/s41437-021-00438-5 DOI: 10.1038/s41437-021-00438-5
Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. 10.1023/B:COGE.0000041021.91777.1a DOI: 10.1023/B:COGE.0000041021.91777.1a
Kolbe JJ, Glor RE, Rodríguez Schettino L et al (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181. 10.1038/nature02807 DOI: 10.1038/nature02807
Krieg F, Estoup A, Triantafyllidis A, Guyomard R (1999) Isolation of microsatellite loci in European catfish, Silurus glanis. Mol Ecol 8:1964–1966 DOI: 10.1046/j.1365-294x.1999.00778-5.x
Krieg F, Triantafyllidis A, Guyomard R (2000) Mitochondrial DNA variation in European populations of Silurus glanis. J Fish Biol 56:713–724. 10.1111/j.1095-8649.2000.tb00767.x DOI: 10.1111/j.1095-8649.2000.tb00767.x
Krueger-Hadfield SA, Kollars NM, Strand AE et al (2017) Genetic identification of source and likely vector of a widespread marine invader. Ecol Evol 7:4432–4447. 10.1002/ece3.3001 DOI: 10.1002/ece3.3001
Laikre L, Hoban S, Bruford MW et al (2020) Post-2020 goals overlook genetic diversity. Science 367:1083–1085. 10.1126/science.abb2748 DOI: 10.1126/science.abb2748
Lawson Handley L-J, Estoup A, Evans DM et al (2011) Ecological genetics of invasive alien species. Biocontrol 56:409–428. 10.1007/s10526-011-9386-2 DOI: 10.1007/s10526-011-9386-2
Lever C (1977) The Naturalised Animals of the British isles. The Naturalised Animals of the British isles 600. Hutchinson, London
Lombaert E, Guillemaud T, Cornuet J-M et al (2010) Bridgehead effect in the worldwide invasion of the biocontrol Harlequin ladybird. PLoS ONE 5:e9743. 10.1371/journal.pone.0009743 DOI: 10.1371/journal.pone.0009743
Lombaert E, Guillemaud T, Thomas CE et al (2011) Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis. Mol Ecol 20:4654–4670. 10.1111/j.1365-294X.2011.05322.x DOI: 10.1111/j.1365-294X.2011.05322.x
Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237 DOI: 10.1046/j.1523-1739.1998.96388.x
Lyach R (2021) Harvest rates of rheophilic fish Vimba vimba, Chondrostoma nasus, and Barbus barbus have a strong relationship with restocking rates and harvest rates of their predator Silurus glanis in lowland mesotrophic rivers in Central Europe. Sustainability 13:11379. 10.3390/su132011379 DOI: 10.3390/su132011379
Lyach R, Remr J (2019) Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. J Appl Ichthyol 35:1094–1104. 10.1111/jai.13956
Marchetti MP, Engstrom T (2016) The conservation paradox of endangered and invasive species: the Conservation Paradox. Conserv Biol 30:434–437. 10.1111/cobi.12642 DOI: 10.1111/cobi.12642
Morisette J, Burgiel S, Brantley K et al (2021) Strategic considerations for invasive species managers in the utilization of environmental DNA (eDNA): steps for incorporating this powerful surveillance tool. MBI 12:747–775. 10.3391/mbi.2021.12.3.15 DOI: 10.3391/mbi.2021.12.3.15
Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487. 10.1007/s00338-007-0248-4 DOI: 10.1007/s00338-007-0248-4
Pairon M, Petitpierre B, Campbell M et al (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105:881–890. 10.1093/aob/mcq065 DOI: 10.1093/aob/mcq065
Palm S, Vinterstare J, Nathanson JE et al (2019) Reduced genetic diversity and low effective size in peripheral northern European catfish Silurus glanis populations. J Fish Biol 95:1407–1421. 10.1111/jfb.14152 DOI: 10.1111/jfb.14152
Paz-Vinas I, Santoul F (2018) Le silure glane (Silurus glanis L.): Connaissances et estimation des stocks dans le bassin de la Garonne. Technical report GAR 33739/1-2 Agence de l’eau Adour Garonne 1:71. http://oai.eau-adour-garonne.fr/oai-documents/61884/GED_00000003.pdf
Peischl S, Excoffier L (2015) Expansion load: recessive mutations and the role of standing genetic variation. Mol Ecol 24:2084–2094. 10.1111/mec.13154 DOI: 10.1111/mec.13154
Perdereau E, Bagnères A-G, Bankhead-Dronnet S et al (2013) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119. 10.1111/mec.12140 DOI: 10.1111/mec.12140
Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. 10.1111/j.1523-1739.1998.96489.x DOI: 10.1111/j.1523-1739.1998.96489.x
Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503. 10.1093/jhered/90.4.502 DOI: 10.1093/jhered/90.4.502
Poulet N, Balaresque P, Aho T, Björklund M (2009) Genetic structure and dynamics of a small introduced population: the pikeperch, Sander lucioperca, in the Rhône delta. Genetica 135:77–86. 10.1007/s10709-008-9260-z DOI: 10.1007/s10709-008-9260-z
R Development Core Team (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
Ralls K, Sunnucks P, Lacy RC, Frankham R (2020) Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol Cons 251:108784. 10.1016/j.biocon.2020.108784 DOI: 10.1016/j.biocon.2020.108784
Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. 10.1016/j.tree.2007.07.002 DOI: 10.1016/j.tree.2007.07.002
Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. 10.1111/j.1471-8286.2007.01931.x DOI: 10.1111/j.1471-8286.2007.01931.x
Schlumberger O, Sagliocco M, Proteau JP (2001) Biogéographie du Silure glane (Silurus glanis): causes hydrographiques, climatiques et anthropiques. Bull Fr Pêche Piscic. 10.1051/kmae:2001002 DOI: 10.1051/kmae:2001002
Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435. 10.1038/ncomms14435 DOI: 10.1038/ncomms14435
Seebens H, Blackburn TM, Dyer EE et al (2018) Global rise in emerging alien species results from increased accessibility of new source pools. Proc Natl Acad Sci USA 115:E2264–E2273. 10.1073/pnas.1719429115 DOI: 10.1073/pnas.1719429115
Bulletin de la Société zoologique d’acclimatation (1865). Société nationale de protection de la nature (France). Goin
Stone R (2007) The last of the Leviathans. Science 316:1684–1688. 10.1126/science.316.5832.1684 DOI: 10.1126/science.316.5832.1684
Syväranta J, Cucherousset J, Kopp D et al (2010) Dietary breadth and trophic position of introduced European catfish Silurus glanis in the River Tarn (Garonne River basin), Southwest France. Aquat Biol 8:137–144. 10.3354/ab00220 DOI: 10.3354/ab00220
Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504. 10.1093/bioinformatics/btn478 DOI: 10.1093/bioinformatics/btn478
Triantafyllidis A, Krieg F, Cottin C et al (2002) Genetic structure and phylogeography of European catfish (Silurus glanis) populations. Mol Ecol 11:1039–1055. 10.1046/j.1365-294X.2002.01501.x DOI: 10.1046/j.1365-294X.2002.01501.x
Uller T, Leimu R (2011) Founder events predict changes in genetic diversity during human-mediated range expansions. Glob Change Biol 17:3478–3485. 10.1111/j.1365-2486.2011.02509.x DOI: 10.1111/j.1365-2486.2011.02509.x
Valadou B (2007) Le silure glane (Silurus glanis, L.) en France. Evolution de son aire de répartition et prédiction de son extension. 99
Van Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. 10.1111/j.1471-8286.2004.00684.x DOI: 10.1111/j.1471-8286.2004.00684.x
Verity R, Nichols RA (2016) Estimating the number of subpopulations (K) in structured populations. Genetics 203:1827–1839. 10.1534/genetics.115.180992 DOI: 10.1534/genetics.115.180992
Vernesi C, Bruford MW, Bertorelle G et al (2008) Where’s the conservation in conservation genetics? Conserv Biol 22:802–804. 10.1111/j.1523-1739.2008.00911.x DOI: 10.1111/j.1523-1739.2008.00911.x
Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of human-caused global change. N Z J Ecol 21:1–16
Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756. 10.1111/j.1755-0998.2007.02061.x DOI: 10.1111/j.1755-0998.2007.02061.x