TMS-EEG; anesthesia; anterior–posterior gradient; severe brain injury; spectral exponent; Cellular and Molecular Neuroscience; Cognitive Neuroscience
Abstract :
[en] Neurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts. Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore, it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts.
Disciplines :
Neurology
Author, co-author :
Colombo, Michele Angelo ✱; Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
Comanducci, Angela ✱; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy ; Department of Engineering, Università Campus Bio-Medico di Roma, Rome 00128, Italy
Casarotto, Silvia; Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy ; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Derchi, Chiara-Camilla; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Annen, Jitka ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Viganò, Alessandro; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Mazza, Alice; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Trimarchi, Pietro Davide; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Boly, Mélanie ; Université de Liège - ULiège > Département des sciences cliniques > Neurologie ; Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, WI 53705-2281, USA
Fecchio, Matteo; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
Bodart, Olivier ; Centre Hospitalier Universitaire de Liège - CHU > > Service de neurologie
Navarro, Jorge; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Laureys, Steven ; Centre Hospitalier Universitaire de Liège - CHU > > Centre du Cerveau²
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Massimini, Marcello; Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy ; IRCCS, Fondazione Don Carlo Gnocchi Onlus, Milan 20148, Italy
Sarasso, Simone; Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
Rosanova, Mario; Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy
Fondazione Fratelli Giuseppe-Vitaliano, Tullio e Mario Confalonieri [IT] Italian Ministry of Health [IT] FRB - Fondation Roi Baudouin [BE] AstraZeneca [BE] FERB - Fondazione Europea Ricerca Biomedica [IT] F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE] Tiny Blue Dot Foundation [US-CA] [US-CA] EU - European Union [BE]
Funding text :
European Union’s Horizon 2020 Framework Program for Research and Innovation under the Specific Grant Agreement No.945539 (Human Brain Project SGA3) (to MM, MR, and SL); Fondazione Regionale per la Ricerca Biomedica (Regione Lombardia), Project Per Brain, call ERAPERMED2019–101, GA779282 (to MR and AC); Italian Ministry of Health (“Ricerca Corrente 2022”) to AC, CD, and AM; Tiny Blue Dot Foundation (toMM); Belgian National Funds for Scientific Research (F.R.S-FNRS; to SL and OG); Fondazione Europea di Ricerca Biomedica (to SL); BIAL Foundation (to SL and OG); AstraZeneca (to OG); Foundation Roi Baudouin (to SL); Italian Ministry of Health, GR−2016–02361494 (to SC); Fondazione Fratelli Giuseppe Vitaliano, Tullioe Mario Confalonieri (toMAC).
Akeju O, Song AH, Hamilos AE, Pavone KJ, Flores FJ, Brown EN, Purdon PL. Electroencephalogram signatures of ketamine-induced unconsciousness. Clin Neurophysiol. 2016:127(6): 2414–2422. https://doi.org/10.1016/j.clinph.2016.03.005.
Alnes SL, De LM, Rossetti AO, Tzovara A. Complementary roles of neural synchrony and complexity for indexing consciousness and chances of surviving in acute coma. NeuroImage. 2021: 245:118638. https://doi.org/10.1016/j.neuroimage.2021.118638.
Amiri M, Fisher PM, Raimondo F, Sidaros A, Hribljan MC, Othman MH, Zibrandtsen I, Albrechtsen SA, Bergdal O, Hansen AE et al. Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study. Brain. 2022. https://doi.org/10.1093/brain/awac335.
Anokhin AP. Genetic psychophysiology: advances, problems, and future directions. Int J Psychophysiol. 2014:93(2):173–197. https://doi.org/10.1016/j.ijpsycho.2014.04.003.
Babiloni C, Pistoia F, Sarà M, Vecchio F, Buffo P, Conson M, Onorati P, Albertini G, Rossini PM. Resting state eyes-closed cortical rhythms in patients with locked-in-syndrome: an eeg study. Clin Neurophysiol. 2010:121(11):1816–1824. https://doi.org/10.1016/j.clinph.2010.04.027.
Bagnato S, Boccagni C, Santangelo A, Prestandrea C, Mazzilli R, Galardi G. EEG predictors of outcome in patients with disorders of consciousness admitted for intensive rehabilitation. Clin Neurophysiol. 2015:126(5):959–966. https://doi.org/10.1016/J.CLINPH.2014.08.005.
Bai Y, Xia X, Li X. A review of resting-state electroencephalography analysis in disorders of consciousness. Front Neurol. 2017:8(SEP):471. https://doi.org/10.3389/fneur.2017.00471.
Baird B, Castelnovo A, Riedner BA, Lutz A, Ferrarelli F, Boly M, Davidson RJ, Tononi G. Human rapid eye movement sleep shows local increases in low-frequency oscillations and global decreases in high-frequency oscillations compared to resting wakefulness. eNeuro. 2018:5(4). https://doi.org/10.1523/ENEURO.0293-18.2018.
Bauer G, Trinka E, Kaplan PW. EEG patterns in hypoxic encephalopathies (post–cardiac arrest syndrome). J Clin Neurophysiol. 2013:30(5):477–489. https://doi.org/10.1097/WNP. 0b013e3182a73e47.
Bayne T, Seth AK, Massimini M. Are there islands of awareness? Trends Neurosci. 2020:43(1):6–16. https://doi.org/10.1016/j.tins.2019.11.003.
Benca RM, Obermeyer WH, Larson CL, Yun B, Dolski I, Kleist KD, Weber SM, Davidson RJ. EEG alpha power and alpha power asymmetry in sleep and wakefulness. Psychophysiology. 1999:36(4): 430–436. https://doi.org/10.1111/1469-8986.3640430.
Berkhoff M, Donati F, Bassetti C. Postanoxic alpha (theta) coma: A reappraisal of its prognostic significance. Clin Neurophysiol. 2000:111(2):297–304. https://doi.org/10.1016/S1388-2457(99)00246-1.
Bernat JL. Chronic disorders of consciousness. Lancet. 2006:367(9517):1181–1192. https://doi.org/10.1016/S0140-6736 (06)68508-5.
Brake N, Duc F, Rokos A, Arseneau F, Shahiri S, Plourde G. Aperiodic EEG activity masks the dynamics of neural oscillations during loss of consciousness from propofol. bioRxiv2021 October 12.464109. 2021: 10.1101/2021.10.12.464109.
Candia-Rivera D, Annen J, Gosseries O, Martial C, Thibaut A, Laureys S, Tallon-Baudry C. Neural responses to heartbeats detect residual signs of consciousness during resting state in postcomatose patients. J Neurosci. 2021:41(24):5251–5262. https://doi.org/10.1523/JNEUROSCI.1740-20.2021.
Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno M-A, Laureys S, Tononi G et al. A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med. 2013:5(198):198ra105–198ra105. https://doi.org/10.1126/scitranslmed.3006294.
Casarotto S, Comanducci A, Rosanova M, Sarasso S, Fecchio M, Napolitani M, Pigorini A, Casali A G, Trimarchi PD, Boly M et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann Neurol. 2016:80(5): 718–729. https://doi.org/10.1002/ana.24779.
Chennu S, Finoia P, Kamau E, Allanson J, Williams GB, Monti MM, Noreika V, Arnatkeviciute A, Canales-Johnson A, Olivares F, et al. 2014. Spectral signatures of reorganised brain networks in disorders of consciousness. Ermentrout B, editor. PLoS Comput Biol. 10(10):e1003887. 10.1371/journal.pcbi.1003887
Chennu S, Annen J, Wannez S, Thibaut A, Chatelle C, Cassol H, Martens G, Schnakers C, Gosseries O, Menon D et al. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness. Brain. 2017:140(8): 2120–2132. https://doi.org/10.1093/brain/awx163.
Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010:107(52): 22665–22670. https://doi.org/10.1073/pnas.1017069108.
Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJAM. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest. Crit Care Med. 2012:40(10):2867–2875. https://doi.org/10.1097/CCM.0b013e31825b94f0.
Colombo MA, Napolitani M, Boly M, Gosseries O, Casarotto S, Rosanova M, Brichant J-F, Boveroux P, Rex S, Laureys S et al. The spectral exponent of the resting EEG indexes the presence of consciousness during unresponsiveness induced by propofol, xenon, and ketamine. NeuroImage. 2019:189:631–644. https://doi.org/10.1016/J.NEUROIMAGE.2019.01.024.
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M et al. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCNendorsed expert group. Clin Neurophysiol. 2020:131(11):2736–2765. https://doi.org/10.1016/j.clinph.2020.07.015.
Corchs S, Chioma G, Dondi R, Gasparini F, Manzoni S, Markowska-Kaczmar U, Mauri G, Zoppis I, Morreale A. Computational methods for resting-state EEG of patients with disorders of consciousness. Front Neurosci. 2019:13(JUL):807. https://doi.org/10.3389/fnins.2019.00807.
De Gennaro L, Ferrara M, Curcio G, Cristiani R. Antero-posterior EEG changes during the wakefulness-sleep transition. Clin Neurophysiol. 2001:112(10):1901–1911.
Engemann DA, Raimondo F, King J-R, Rohaut B, Louppe G, Faugeras F, Annen J, Cassol H, Gosseries O, Fernandez-Slezak D et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain. 2018. https://doi.org/10.1093/brain/awy251.
Esposito MJ, Nielsen TA, Paquette T. Reduced alpha power associated with the recall of mentation from stage 2 and stage REM sleep. Psychophysiology. 2004:41(2):288–297. https://doi.org/10.1111/j.1469-8986.00143.x.
Estraneo A, Moretta P, Loreto V, Lanzillo B, Cozzolino A, Saltalamacchia A, Lullo F, Santoro L, Trojano L. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology. 2013:80(5):464–470. https://doi.org/10.1212/WNL.0b013e31827 f0f31.
Estraneo A, Loreto V, Guarino I, Boemia V, Paone G, Moretta P, Trojano L. Standard EEG in diagnostic process of prolonged disorders of consciousness. Clin Neurophysiol. 2016:127(6):2379–2385. https://doi.org/10.1016/J.CLINPH.2016.03.021.
Fingelkurts Alexander A., Fingelkurts Andrew A., Bagnato S, Boccagni C, Galardi G. 2013. The value of spontaneous EEG oscillations in distinguishing patients in vegetative and minimally conscious states. In: Suppl Clin Neurophysiol. Vol. 62. Elsevier B.V.; p. 81–99. https://doi.org/10.1016/B978-0-7020-5307-8.00005-3
Forgacs PB, Conte MM, Fridman EA, Voss HU, Victor JD, Schiff ND. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann Neurol. 2014:76(6):869–879. https://doi.org/10.1002/ana.24283.
Forgacs PB, Frey H-P, Velazquez A, Thompson S, Brodie D, Moitra V, Rabani L, Park S, Agarwal S, Falo MC et al. Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol. 2017:4(2):119–129. https://doi.org/10.1002/acn3.385.
Gao R, Peterson EJ, Voytek B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage. 2017:158:70–78. https://doi.org/10.1016/J.NEUROIMAGE.2017.06.078.
Giacino JT, Kalmar K, Whyte J. The JFK coma recovery scale-revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil. 2004:85(12):2020–2029. https://doi.org/10.1016/J.APMR.2004.02.033.
Giacino JT, Schnakers C, Rodriguez-Moreno D, Kalmar K, Schiff N, Hirsch J. Behavioral assessment in patients with disorders of consciousness: gold standard or fool’s gold? Prog Brain Res. 2009:177(C):33–48. https://doi.org/10.1016/S0079-6123(09) 17704-X.
Giacino JT, Fins JJ, Laureys S, Schiff ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. 2014:10(2):99–114. https://doi.org/10.1038/nrneurol.2013.279.
Giacino JT, Katz DI, Schiff ND, Whyte J, Ashman EJ, Ashwal S, Barbano R, Hammond FM, Laureys S, Ling GSF et al. Comprehensive systematic review update summary: disorders of consciousness: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of neurology; the American congress of rehabilitation medicine. And the Neurology. 2018a:91(10):461–470. https://doi.org/10.1212/WNL.0000000000005928.
Gloor P, Ball G, Schaul N. Brain lesions that produce delta waves in the EEG. Neurology. 1977:27(4):326–333. https://doi.org/10.1212/wnl.27.4.326
He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron. 2010:66(3):353–369. https://doi.org/10.1016/j.neuron.2010.04.020.
Hermann B, Stender J, Habert MO, Kas A, Denis-Valente M, Raimondo F, Pérez P, Rohaut B, Sitt JD, Naccache L. Multimodal FDG-PET and EEG assessment improves diagnosis and prognostication of disorders of consciousness. NeuroImage Clin. 2021:30:102601. https://doi.org/10.1016/j.nicl.2021.102601.
Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS, Lee JW, Wusthoff CJ, Hahn CD, Westover MB et al. American clinical neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021:38(1):1–29. https://doi.org/10.1097/WNP.0000000000000806.
Hockaday JM, Potts F, Epstein E, Bonazzi A, Schwab RS. Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest. Electroencephalogr Clin Neurophysiol. 1965:18(6):575–586. https://doi.org/10.1016/0013-4694(65) 90075-1.
Hofmeijer J, van Putten MJAM. EEG in postanoxic coma: prognostic and diagnostic value. Clin Neurophysiol. 2016:127(4):2047–2055. https://doi.org/10.1016/j.clinph.2016.02.002.
Hofmeijer J, Beernink TMJ, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, Putten MJAM van. 2015. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology 85(2):137–143. https://doi.org/10.1212/WNL.0000000000001742
Howell K, Grill E, Klein AM, Straube A, Bender A. Rehabilitation outcome of anoxic-ischaemic encephalopathy survivors with prolonged disorders of consciousness. Resuscitation. 2013:84(10):1409–1415. https://doi.org/10.1016/j.resuscitation.2013.05.015.
James G, Witten D, Hastie T, Tibshirani R. 2013. Statistical learning. Springer, New York, NY; p. 15–57. https://doi.org/10.1007/978-1-4614-7138-7_2
Katz DI, Polyak M, Coughlan D, Nichols M, Roche A. Natural history of recovery from brain injury after prolonged disorders of consciousness: outcome of patients admitted to inpatient rehabilitation with 1-4 year follow-up. Prog Brain Res. 2009:177(C):73–88. https://doi.org/10.1016/S0079-6123(09)17707-5.
Kim H, Lee UC. Criticality as a determinant of integrated information Φ in human brain networks. Entropy. 2019:21(10):981. https://doi.org/10.3390/e21100981.
Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, Laureys S, Naccache L, Ozturk S, Rohaut B et al. European academy of neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol. 2020:27(5):741–756. https://doi.org/10.1111/ene.14151.
Kustermann T, Nguepnjo Nguissi NA, Pfeiffer C, Haenggi M, Kurmann R, Zubler F, Oddo M, Rossetti AO, De Lucia M. Electroencephalography-based power spectra allow coma outcome prediction within 24 h of cardiac arrest. Resuscitation. 2019. https://doi.org/10.1016/J.RESUSCITATION.2019.05.021.
Laitio RM, Kaskinoro K, Särkelä MOK, Kaisti KK, Salmi E, Maksimow A, Långsjö JW, Aantaa R, Kangas K, Jääskeläinen S et al. Bispectral index, entropy, and quantitative electroencephalogram during single-agent xenon Anesthesia. Anesthesiology. 2008:108(1):63–70. https://doi.org/10.1097/01.anes.0000296106.52472.a6.
Lanzone J, Colombo MA, Sarasso S, Zappasodi F, Rosanova M, Massimini M, Di LV, Assenza G. EEG spectral exponent as a synthetic index for the longitudinal assessment of stroke recovery. Clin Neurophysiol. 2022:137:92–101. https://doi.org/10.1016/j.clinph.2022.02.022.
Lee H, Golkowski D, Jordan D, Berger S, Ilg R, Lee J, Mashour GA, Lee UC, Avidan MS, Blain-Moraes S et al. Relationship of critical dynamics, functional connectivity, and states of consciousness in large-scale human brain networks. NeuroImage. 2019:188: 228–238. https://doi.org/10.1016/j.neuroimage.2018.12.011.
Lehembre R, Bruno MA, Vanhaudenhuyse A, Chatelle C, Cologan V, Leclercq Y, Soddu A, Macq B, Laureys S, Noirhomme Q. Resting-state EEG study of comatose patients: A connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct Neurol. 2012:27(1): 41–47.
Lutkenhoff ES, Nigri A, Rossi Sebastiano D, Sattin D, Visani E, Rosazza C, D’Incerti L, Bruzzone MG, Franceschetti S, Leonardi M et al. EEG power spectra and subcortical pathology in chronic disorders of consciousness. Psychol Med. 2022:52(8):1491–1500. https://doi.org/10.1017/S003329172000330X.
Maschke C, Duclos C, Owen AM, Jerbi K, Blain-Moraes S. Aperiodic brain activity and response to anesthesia vary in disorders of consciousness. bioRxiv.:2022 April 22.489199. 2022: 10.1101/2022.04.22.489199.
Mertel I, Pavlov YG, Barner C, Müller F, Diekelmann S, Kotchoubey B. Sleep in disorders of consciousness: behavioral and polysomnographic recording. BMC Med. 2020:18(1):350. https://doi.org/10.1186/s12916-020-01812-6.
Millière R, Carhart-Harris RL, Roseman L, Trautwein FM, Berkovich-Ohana A. Psychedelics, meditation, and self-consciousness. Front Psychol. 2018:9(SEP):1475. https://doi.org/10.3389/fpsyg.2018.01475.
Miskovic V, MacDonald KJ, Rhodes LJ, Cote KA. Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle. Hum Brain Mapp. 2018. https://doi.org/10.1002/hbm.24393.
Muthukumaraswamy SD, Liley DT. 1/f electrophysiological spectra in resting and drug-induced states can be explained by the dynamics of multiple oscillatory relaxation processes. NeuroImage. 2018:179:582–595. https://doi.org/10.1016/J.NEUROIMAGE.2018.06.068.
Muthukumaraswamy SD, Carhart-Harris RL, Moran RJ, Brookes MJ, Williams TM, Errtizoe D, Sessa B, Papadopoulos A, Bolstridge M, Singh KD et al. Broadband cortical desynchronization underlies the human psychedelic state. J Neurosci. 2013: 33(38):15171–15183. https://doi.org/10.1523/JNEUROSCI.2063-13. 2013.
Naro A, Bramanti P, Leo A, Cacciola A, Bramanti A, Manuli A, Calabrò RS. Towards a method to differentiate chronic disorder of consciousness patients’ awareness: the low-resolution brain electromagnetic tomography analysis. J Neurol Sci. 2016:368: 178–183. https://doi.org/10.1016/J.JNS.2016.07.016.
Noirhomme Q, Brecheisen R, Lesenfants D, Antonopoulos G, Laureys S. “Look at my classifier’s result”: disentangling unresponsive from (minimally) conscious patients. NeuroImage. 2017: 145:288–303. https://doi.org/10.1016/J.NEUROIMAGE.2015.12.006.
Ogilvie RD. The process of falling asleep. Sleep Med Rev. 2001:5(3): 247–270. https://doi.org/10.1053/smrv.2001.0145.
Olesen SS, Gram M, Jackson CD, Halliday E, Sandberg TH, Drewes AM, Morgan MY. Electroencephalogram variability in patients with cirrhosis associates with the presence and severity of hepatic encephalopathy. J Hepatol. 2016:65(3):517–523. https://doi.org/10.1016/j.jhep.2016.05.004.
Palva S, Palva JM. Roles of brain criticality and multiscale oscillations in temporal predictions for sensorimotor processing. Trends Neurosci. 2018:41(10):729–743. https://doi.org/10.1016/J.TINS.2018.08.008.
Pelentritou A, Kuhlmann L, Cormack J, McGuigan S, Woods W, Muthukumaraswamy S, Liley D. Source-level cortical power changes for xenon and nitrous oxide-induced reductions in consciousness in healthy male volunteers. Anesthesiology. 2020:132(5):1017–1033. https://doi.org/10.1097/ALN.0000000000003169.
Piarulli A, Bergamasco M, Thibaut A, Cologan V, Gosseries O, Laureys S. EEG ultradian rhythmicity differences in disorders of consciousness during wakefulness. J Neurol. 2016:263(9):1746–1760. https://doi.org/10.1007/s00415-016-8196-y.
Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalography for anesthesiologists. Anesthesiology. 2015: 123(4):937–960. https://doi.org/10.1097/ALN.0000000000000841.
Rodin E, Luby E. Effects of LSD-25 on the EEG and photic evoked responses. Arch Gen Psychiatry. 1966:14(4):435–441. https://doi.org/10.1001/archpsyc.1966.01730100099013.
Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016:15(6):597–609. https://doi.org/10.1016/S1474-4422(16)00015-6.
Rossi Sebastiano D, Panzica F, Visani E, Rotondi F, Scaioli V, Leonardi M, Sattin D, D’Incerti L, Parati E, Ferini Strambi L et al. Significance of multiple neurophysiological measures in patients with chronic disorders of consciousness. Clin Neurophysiol. 2015:126(3):558–564. https://doi.org/10.1016/j.clinph.2014.07.004.
Russo S, Pigorini A, Mikulan E, Sarasso S, Rubino A, Zauli FM, Parmigiani S, d’Orio P, Cattani A, Francione S et al. Focal lesions induce large-scale percolation of sleep-like intracerebral activity in awake humans. NeuroImage. 2021:234:117964. https://doi.org/10.1016/j.neuroimage.2021.117964.
Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhytmic recurrent activity in neocortex. Nat Neurosci. 2000:3(10):1027–1034. https://doi.org/10.1038/79848.
Sarasso S, Boly M, Napolitani M, Gosseries O, Charland-Verville V, Casarotto S, Rosanova M, Casali AG, Brichant JF, Boveroux P et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr Biol. 2015:25(23): 3099–3105. https://doi.org/10.1016/j.cub.2015.10.014.
Sarasso S, D’Ambrosio S, Fecchio M, Casarotto S, Viganò A, Landi C, Mattavelli G, Gosseries O, Quarenghi M, Laureys S et al. Local sleep-like cortical reactivity in the awake brain after focal injury. Brain. 2020:143(12):3672–3684. https://doi.org/10.1093/brain/awaa338.
Schartner MM, Carhart-Harris RL, Barrett AB, Seth AK, Muthukumaraswamy SD. Increased spontaneous MEG signal diversity for psychoactive doses of ketamine. LSD and psilocybin Sci Rep. 2017:7:46421. https://doi.org/10.1038/srep46421.
Scheinin A, Kallionpää RE, Li D, Kallioinen M, Kaisti K, Långsjö J, Maksimow A, Vahlberg T, Valli K, Mashour GA et al. Differentiating drug-related and state-related effects of Dexmedetomidine and Propofol on the electroencephalogram. Anesthesiology. 2018:1(Xxx): 10.1097/ALN.0000000000002192.
Schiff ND. 2016. Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: Model and predictions. In: Brain Funct responsiveness Disord conscious. Springer International Publishing; p. 195–204. https://doi.org/10.1007/978-3-319-21425-2_15
Scollo-Lavizzari G, Bassetti C. Prognostic value of EEG in postanoxic coma after cardiac arrest. Eur Neurol. 1987:26(3):161–170. https://doi.org/10.1159/000116329.
Sitt JD, King JR, El Karoui I, Rohaut B, Faugeras F, Gramfort A, Cohen L, Sigman M, Dehaene S, Naccache L. Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state. Brain. 2014:137(8):2258–2270. https://doi.org/10.1093/brain/awu141.
Snider SB, Fischer D, McKeown ME, Cohen AL, Schaper FLWVJ, Amorim E, Fox MD, Scirica B, Bevers MB, Lee JW. Regional distribution of brain injury after cardiac arrest: clinical and electrographic correlates. Neurology. 2022:98(12):E1238–E1247. https://doi.org/10.1212/WNL.0000000000013301.
Sokoliuk R, Cruse D. Listening for the rhythm of a conscious brain. Brain. 2018:141(11):3095–3097. https://doi.org/10.1093/brain/awy267.
Synek VM. Prognostically important EEG coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol. 1988:5(2):161–174. https://doi.org/10.1097/00004691-198804000-00003.
Tagliazucchi E. The signatures of conscious access and its phenomenology are consistent with large-scale brain communication at criticality. Conscious Cogn. 2017:55:136–147. https://doi.org/10.1016/j.concog.2017.08.008.
Timmermann C, Roseman L, Schartner M, Milliere R, Williams LTJ, Erritzoe D, Muthukumaraswamy S, Ashton M, Bendrioua A, Kaur O et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep. 2019:9(1):1–13. https://doi.org/10.1038/s41598-019-51974-4.
Timofeev I. Origin of slow cortical oscillations in Deafferented cortical slabs. Cereb Cortex. 2000:10(12):1185–1199. https://doi.org/10.1093/cercor/10.12.1185.
Toker D, Pappas I, Lendner JD, Frohlich J, Mateos DM, Muthukumaraswamy S, Carhart-Harris R, Paff M, Vespa PM, Monti MM et al. Consciousness is supported by near-critical slow cortical electrodynamics. Proc Natl Acad Sci U S A. 2022:119(7). https://doi.org/10.1073/pnas.2024455119.
van Erp WS, Lavrijsen JCM, Vos PE, Bor H, Laureys S, Koopmans RTCM. The vegetative state: prevalence, misdiagnosis, and treatment limitations. J Am Med Dir Assoc. 2015:16(1):85.e9–85.e14. https://doi.org/10.1016/j.jamda.2014.10.014.
Vijayan S, Ching SN, Purdon PL, Brown EN, Kopell NJ. Thalamocortical mechanisms for the anteriorization of alpha rhythms during propofol-induced unconsciousness. J Neurosci. 2013: 33(27):11070–11075. https://doi.org/10.1523/JNEUROSCI.5670-12. 2013.
Vlisides PE, Bel-Bahar T, Lee UC, Li D, Kim H, Janke E, Tarnal V, Pichurko AB, McKinney AM, Kunkler BS et al. Neurophysiologic correlates of ketamine sedation and Anesthesia: A high-density electroencephalography study in healthy volunteers. Anesthesiology. 2017:127(1):58–69. https://doi.org/10.1097/ALN. 0000000000001671.
Vogel F. The genetic basis of the normal human electroencephalogram (EEG). Humangenetik. 1970:10(2):91–114. https://doi.org/10.1007/BF00295509.
Wannez S, Heine L, Thonnard M, Gosseries O, Laureys S. The repetition of behavioral assessments in diagnosis of disorders of consciousness. Ann Neurol. 2017:81(6):883–889. https://doi.org/10.1002/ana.24962.
Wutzl B, Golaszewski SM, Leibnitz K, Langthaler PB, Kunz AB, Leis S, Schwenker K, Thomschewski A, Bergmann J, Trinka E. Narrative review: quantitative EEG in disorders of consciousness. Brain Sci. 2021:11(6):697. https://doi.org/10.3390/brainsci11060697.
Zhou DW, Mowrey DD, Tang P, Xu Y. Percolation model of sensory transmission and loss of consciousness under general Anesthesia. Phys Rev Lett. 2015:115(10). https://doi.org/10.1103/PhysRevLett.115.108103.
Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S et al. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. NeuroImage. 2021:226:117579. https://doi.org/10.1016/j.neuroimage.2020.117579.