Adolescence; Childhood; Hippocampus; Structural covariance; Neuroscience (all); General Neuroscience
Abstract :
[en] Hippocampal-cortical networks play an important role in neurocognitive development. Applying the method of Connectivity-Based Parcellation (CBP) on hippocampal-cortical structural covariance (SC) networks computed from T1-weighted magnetic resonance images, we examined how the hippocampus differentiates into subregions during childhood and adolescence (N = 1105, 6-18 years). In late childhood, the hippocampus mainly differentiated along the anterior-posterior axis similar to previous reported functional differentiation patterns of the hippocampus. In contrast, in adolescence a differentiation along the medial-lateral axis was evident, reminiscent of the cytoarchitectonic division into cornu ammonis and subiculum. Further meta-analytical characterization of hippocampal subregions in terms of related structural co-maturation networks, behavioural and gene profiling suggested that the hippocampal head is related to higher order functions (e.g. language, theory of mind, autobiographical memory) in late childhood morphologically co-varying with almost the whole brain. In early adolescence but not in childhood, posterior subicular SC networks were associated with action-oriented and reward systems. The findings point to late childhood as an important developmental period for hippocampal head morphology and to early adolescence as a crucial period for hippocampal integration into action- and reward-oriented cognition. The latter may constitute a developmental feature that conveys increased propensity for addictive disorders.
Disciplines :
Neurosciences & behavior
Author, co-author :
Plachti, Anna; Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany, Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
Latzman, Robert D; Data Sciences Institute, Takeda Pharmaceutical, Cambridge, MA, USA
Balajoo, Somayeh Maleki; Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
Hoffstaedter, Felix; Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
Madsen, Kathrine Skak; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark, Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
Baare, William; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark
Siebner, Hartwig R; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital -Amager and Hvidovre, Copenhagen, Denmark, Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Eickhoff, Simon B; Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
Genon, Sarah ; Université de Liège - ULiège > Département des sciences cliniques > Neuroimagerie des troubles de la mémoire et revalidation cognitive
Language :
English
Title :
Hippocampal anterior- posterior shift in childhood and adolescence.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, GE 2835/2-1, EI 816/16-1 and EI 816/21-1), the National Institute of Mental Health (R01-MH074457), the Helmholtz Joint Lab "Supercomputing and Modeling for the Human Brain", the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement 785907 (HBP SGA2), 945539 (HBP SGA3), The Virtual Brain Cloud (EU H2020, no. 826421) and by Lifebrain Project Grant (grant agreement number 732592). AP was supported by Region Hovedstadens Forskningsfond 2021 (grant number A7118). HRS holds a 5-year professorship in precision medicine at the Faculty of Health Sciences and Medicine, University of Copenhagen which is sponsored by the Lundbeck Foundation (Grant Nr. R186-2015-2138).
Alexander, L.M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., Vega-Potler, N., Langer, N., Alexander, A., Kovacs, M., Litke, S., O'Hagan, B., Andersen, J., Bronstein, B., Bui, A., Bushey, M., Butler, H., Castagna, V., Camacho, N., Chan, E., Citera, D., Clucas, J., Cohen, S., Dufek, S., Eaves, M., Fradera, B., Gardner, J., Grant-Villegas, N., Green, G., Gregory, C., Hart, E., Harris, S., Horton, M., Kahn, D., Kabotyanski, K., Karmel, B., Kelly, S.P., Kleinman, K., Koo, B., Kramer, E., Lennon, E., Lord, C., Mantello, G., Margolis, A., Merikangas, K.R., Milham, J., Minniti, G., Neuhaus, R., Levine, A., Osman, Y., Parra, L.C., Pugh, K.R., Racanello, A., Restrepo, A., Saltzman, T., Septimus, B., Tobe, R., Waltz, R., Williams, A., Yeo, A., Castellanos, F.X., Klein, A., Paus, T., Leventhal, B.L., Craddock, R.C., Koplewicz, H.S., Milham, M.P., An open resource for transdiagnostic research in pediatric mental health and learning disorders. 2017/12/19 Sci. Data1, 2017, 10.1038/sdata.2017.181.
Alexander-Bloch, A., Giedd, J.N., Bullmore, E., Imaging structural co-variance between human brain regions. (May) Nat. Rev. Neurosci. 14:5 (2013), 322–336, 10.1038/nrn3465.
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider, F., Zilles, K., Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. (Dec) Anat. Embryol. (Berl. ) 210:5–6 (2005), 343–352, 10.1007/s00429-005-0025-5.
Arnold, S.E., Trojanowski, J.Q., Human fetal hippocampal development: I. Cytoarchitecture, myeloarchitecture, and neuronal morphologic features. J. Comp. Neurol. 367:2 (1996), 274–292, 10.1002/(SICI)1096-9861(19960401)367:2<274::AID-CNE9>3.0.CO;2-2.
Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S., Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. Apr 15 NeuroImage 170 (2018), 5–30, 10.1016/j.neuroimage.2017.04.014.
Barch, D.M., Harms, M.P., Tillman, R., Hawkey, E., Luby, J.L., Early childhood depression, emotion regulation, episodic memory, and hippocampal development. (Jan) J. Abnorm Psychol. 128:1 (2019), 81–95, 10.1037/abn0000392.
Barnett, A.J., Man, V., McAndrews, M.P., Parcellation of the hippocampus using resting functional connectivity in temporal lobe epilepsy. Front Neurol., 10, 2019, 920, 10.3389/fneur.2019.00920.
Benear, S.L., Ngo, C.T., Olson, I.R., Dissecting the fornix in basic memory processes and neuropsychiatric disease: a review. (Sep) Brain Connect 10:7 (2020), 331–354, 10.1089/brain.2020.0749.
Benes, F.M., Myelination of cortical-hippocampal relays during late adolescence. Schizophr. Bull. 15:4 (1989), 585–593, 10.1093/schbul/15.4.585.
Blakemore, S.-J., Robbins, T.W., Decision-making in the adolescent brain. 2012/09/01 Nat. Neurosci. 15:9 (2012), 1184–1191, 10.1038/nn.3177.
Blankenship, S.L., Redcay, E., Dougherty, L.R., Riggins, T., Development of hippocampal functional connectivity during childhood. (Jan) Hum. brain Mapp. 38:1 (2017), 182–201, 10.1002/hbm.23353.
Calabro, F.J., Murty, V.P., Jalbrzikowski, M., Tervo-Clemmens, B., Luna, B., Development of hippocampal-prefrontal cortex interactions through adolescence. Cerebral Cortex, 2020, 1548–1558, 10.1093/cercor/bhz186.
Canada, K.L., Botdorf, M., Riggins, T., Longitudinal development of hippocampal subregions from early- to mid-childhood. Hippocampus 30:10 (2020), 1098–1111, 10.1002/hipo.23218.
Canada, K.L., Hancock, G.R., Riggins, T., Modeling longitudinal changes in hippocampal subfields and relations with memory from early- to mid-childhood. (Apr) Dev. Cogn. Neurosci., 48, 2021, 100947, 10.1016/j.dcn.2021.100947.
Chang, L.J., Yarkoni, T., Khaw, M.W., Sanfey, A.G., Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb. Cortex 23:3 (2012), 739–749, 10.1093/cercor/bhs065.
Changeux, J.-P., Danchin, A., Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. 1976/12/01 Nature 264:5588 (1976), 705–712, 10.1038/264705a0.
Davidow, J.Y., Foerde, K., Galván, A., Shohamy, D., An upside to reward sensitivity: the hippocampus supports enhanced reinforcement learning in adolescence. Oct 5 Neuron 92:1 (2016), 93–99, 10.1016/j.neuron.2016.08.031.
Decker, A.L., Duncan, K., Finn, A.S., Mabbott, D.J., Children's family income is associated with cognitive function and volume of anterior not posterior hippocampus. Aug 12 Nat. Commun., 11(1), 2020, 4040, 10.1038/s41467-020-17854-6.
Deen, B., Pitskel, N.B., Pelphrey, K.A., Three systems of insular functional connectivity identified with cluster analysis. Cereb. Cortex 21:7 (2010), 1498–1506, 10.1093/cercor/bhq186.
Doremus-Fitzwater, T.L., Spear, L.P., Reward-centricity and attenuated aversions: an adolescent phenotype emerging from studies in laboratory animals. (Nov) Neurosci. Biobehav Rev. 70 (2016), 121–134, 10.1016/j.neubiorev.2016.08.015.
Douaud, G., Groves, A.R., Tamnes, C.K., Westlye, L.T., Duff, E.P., Engvig, A., Walhovd, K.B., James, A., Gass, A., Monsch, A.U., Matthews, P.M., Fjell, A.M., Smith, S.M., Johansen-Berg, H., A common brain network links development, aging, and vulnerability to disease. Dec 9 Proc. Natl. Acad. Sci. USA 111:49 (2014), 17648–17653, 10.1073/pnas.1410378111.
Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D., Connectivity-based parcellation: critique and implications. Hum. brain Mapp. 36:12 (2015), 4771–4792, 10.1002/hbm.22933.
Eickhoff, S.B., Yeo, B.T.T., Genon, S., Imaging-based parcellations of the human brain. 2018/11/01 Nat. Rev. Neurosci. 19:11 (2018), 672–686, 10.1038/s41583-018-0071-7.
Ernst, M., Nelson, E.E., Jazbec, S., McClure, E.B., Monk, C.S., Leibenluft, E., Blair, J., Pine, D.S., Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. May 1 NeuroImage 25:4 (2005), 1279–1291, 10.1016/j.neuroimage.2004.12.038.
Fortin, J.P., Parker, D., Tunç, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R., Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T., Harmonization of multi-site diffusion tensor imaging data. Nov 1 NeuroImage 161 (2017), 149–170, 10.1016/j.neuroimage.2017.08.047.
Fortin, J.-P., Cullen, N., Sheline, Y.I., Taylor, W.D., Aselcioglu, I., Cook, P.A., Adams, P., Cooper, C., Fava, M., McGrath, P.J., McInnis, M., Phillips, M.L., Trivedi, M.H., Weissman, M.M., Shinohara, R.T., Harmonization of cortical thickness measurements across scanners and sites. NeuroImage 167 (2018), 104–120, 10.1016/j.neuroimage.2017.11.024.
Galvan, A., Hare, T.A., Parra, C.E., Penn, J., Voss, H., Glover, G., Casey, B.J., Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J. Neurosci. 26:25 (2006), 6885–6892, 10.1523/jneurosci.1062-06.2006.
Ge, R., Kot, P., Liu, X., Lang, D.J., Wang, J.Z., Honer, W.G., Vila-Rodriguez, F., Parcellation of the human hippocampus based on gray matter volume covariance: Replicable results on healthy young adults. Hum. Brain Mapp. 40:13 (2019), 3738–3752, 10.1002/hbm.24628.
Geier, C.F., Adolescent cognitive control and reward processing: implications for risk taking and substance use. (Jul) Horm. Behav. 64:2 (2013), 333–342, 10.1016/j.yhbeh.2013.02.008.
Gilmore, J.H., Shi, F., Woolson, S.L., Knickmeyer, R.C., Short, S.J., Lin, W., Zhu, H., Hamer, R.M., Styner, M., Shen, D., Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cerebral Cortex, 2012, 2478–2485, 10.1093/cercor/bhr327.
Gogtay, N., Nugent, T.F. 3rd, Herman, D.H., Ordonez, A., Greenstein, D., Hayashi, K.M., Clasen, L., Toga, A.W., Giedd, J.N., Rapoport, J.L., Thompson, P.M., Dynamic mapping of normal human hippocampal development. Hippocampus 16:8 (2006), 664–672, 10.1002/hipo.20193.
Goodkind, M., Eickhoff, S.B., Oathes, D.J., Jiang, Y., Chang, A., Jones-Hagata, L.B., Ortega, B.N., Zaiko, Y.V., Roach, E.L., Korgaonkar, M.S., Grieve, S.M., Galatzer-Levy, I., Fox, P.T., Etkin, A., Identification of a common neurobiological substrate for mental illness. (Apr) JAMA Psychiatry 72:4 (2015), 305–315, 10.1001/jamapsychiatry.2014.2206.
Gorgolewski, K.J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S.S., Maumet, C., Sochat, V.V., Nichols, T.E., Poldrack, R.A., Poline, J.-B., Yarkoni, T., Margulies, D.S., NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain [Methods]. 2015-April-10 Front. Neuroinf., 9(8), 2015, 10.3389/fninf.2015.00008.
Gorgolewski KJ, F.A., Chang L. et al. (2014). Tight fitting genes: finding relations between statistical maps and gene expression patterns. F1000Posters 2014, 5:1607 (poster).
Grayson, D.S., Fair, D.A., Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature. Oct 15 NeuroImage 160 (2017), 15–31, 10.1016/j.neuroimage.2017.01.079.
Haber, S.N., Knutson, B., The reward circuit: linking primate anatomy and human imaging. 2010/01/01 Neuropsychopharmacology 35:1 (2010), 4–26, 10.1038/npp.2009.129.
Hansen, J.Y., Markello, R.D., Vogel, J.W., Seidlitz, J., Bzdok, D., Misic, B., Mapping gene transcription and neurocognition across human neocortex. (Sep) Nat. Hum. Behav. 5:9 (2021), 1240–1250, 10.1038/s41562-021-01082-z.
Huntley, E.D., Marusak, H.A., Berman, S.E., Zundel, C.G., Hatfield, J.R.B., Keating, D.P., Rabinak, C.A., Adolescent substance use and functional connectivity between the ventral striatum and hippocampus. Jul 15 Behav. Brain Res., 390, 2020, 112678, 10.1016/j.bbr.2020.112678.
Jacobus, J., Thayer, R.E., Trim, R.S., Bava, S., Frank, L.R., Tapert, S.F., White matter integrity, substance use, and risk taking in adolescence. (Jun) Psychol. Addict. Behav. 27:2 (2013), 431–442, 10.1037/a0028235.
Kahnt, T., Chang, L.J., Park, S.Q., Heinzle, J., Haynes, J.D., Connectivity-based parcellation of the human orbitofrontal cortex. May 2 J. Neurosci. 32:18 (2012), 6240–6250, 10.1523/jneurosci.0257-12.2012.
Kelly, C., Toro, R., Di Martino, A., Cox, C.L., Bellec, P., Castellanos, F.X., Milham, M.P., A convergent functional architecture of the insula emerges across imaging modalities. Jul 16 NeuroImage 61:4 (2012), 1129–1142, 10.1016/j.neuroimage.2012.03.021.
Keresztes, A., Bender, A.R., Bodammer, N.C., Lindenberger, U., Shing, Y.L., Werkle-Bergner, M., Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proc. Natl. Acad. Sci. 114:34 (2017), 9212–9217, 10.1073/pnas.1710654114.
Kim, J.H., Lee, J.M., Jo, H.J., Kim, S.H., Lee, J.H., Kim, S.T., Seo, S.W., Cox, R.W., Na, D.L., Kim, S.I., Saad, Z.S., Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Feb 1 NeuroImage 49:3 (2010), 2375–2386, 10.1016/j.neuroimage.2009.10.016.
Langnes, E., Sneve, M.H., Sederevicius, D., Amlien, I.K., Walhovd, K.B., Fjell, A.M., Anterior and posterior hippocampus macro‐and microstructure across the lifespan in relation to memory—a longitudinal study. Hippocampus, 2020.
Lavenex, P., Banta Lavenex, P., Building hippocampal circuits to learn and remember: insights into the development of human memory. Oct 1 Behav. Brain Res. 254 (2013), 8–21, 10.1016/j.bbr.2013.02.007.
Lee, J.K., Ekstrom, A.D., Ghetti, S., Volume of hippocampal subfields and episodic memory in childhood and adolescence. Jul 1 NeuroImage 94 (2014), 162–171, 10.1016/j.neuroimage.2014.03.019.
Li, G., Fang, L., Fernández, G., Pleasure, S.J., The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. May 22 Neuron 78:4 (2013), 658–672, 10.1016/j.neuron.2013.03.019.
Lin, M., Fwu, P.T., Buss, C., Davis, E.P., Head, K., Muftuler, L.T., Sandman, C.A., Su, M.Y., Developmental changes in hippocampal shape among preadolescent children. (Nov) Int J. Dev. Neurosci. 31:7 (2013), 473–481, 10.1016/j.ijdevneu.2013.06.001.
Lynch, K.M., Shi, Y., Toga, A.W., Clark, K.A., Hippocampal shape maturation in childhood and adolescence. Cerebral Cortex, 2019, 3651–3665, 10.1093/cercor/bhy244.
Maller, J.J., Welton, T., Middione, M., Callaghan, F.M., Rosenfeld, J.V., Grieve, S.M., Revealing the hippocampal connectome through super-resolution 1150-direction diffusion MRI. 2019/02/20 Sci. reports, 9(1), 2019, 2418, 10.1038/s41598-018-37905-9.
Meissner, T.W., Genç, E., Mädler, B., Weigelt, S., Myelin development in visual scene-network tracts beyond late childhood: a multimethod neuroimaging study. (Apr) Cortex 137 (2021), 18–34, 10.1016/j.cortex.2020.12.016.
Mills, K.L., Goddings, A.L., Herting, M.M., Meuwese, R., Blakemore, S.J., Crone, E.A., Dahl, R.E., Güroğlu, B., Raznahan, A., Sowell, E.R., Tamnes, C.K., Structural brain development between childhood and adulthood: convergence across four longitudinal samples. Nov 1 NeuroImage 141 (2016), 273–281, 10.1016/j.neuroimage.2016.07.044.
Moser, M.B., Moser, E.I., Functional differentiation in the hippocampus. Hippocampus 8:6 (1998), 608–619, 10.1002/(sici)1098-1063(1998)8:6<608::Aid-hipo3>3.0.Co;2-7.
Moura, L.M., Crossley, N.A., Zugman, A., Pan, P.M., Gadelha, A., Del Aquilla, M.A.G., Picon, F.A., Anés, M., Amaro, E. Jr., de Jesus Mari, J., Miguel, E.C., Rohde, L.A., Bressan, R.A., McGuire, P., Sato, J.R., Jackowski, A.P., Coordinated brain development: exploring the synchrony between changes in grey and white matter during childhood maturation. (Jun) Brain Imaging Behav. 11:3 (2017), 808–817, 10.1007/s11682-016-9555-0.
Murty, V.P., Calabro, F., Luna, B., The role of experience in adolescent cognitive development: integration of executive, memory, and mesolimbic systems. (Nov) Neurosci. Biobehav Rev. 70 (2016), 46–58, 10.1016/j.neubiorev.2016.07.034.
Ofen, N., Chai, X.J., Schuil, K.D.I., Whitfield-Gabrieli, S., Gabrieli, J.D.E., The development of brain systems associated with successful memory retrieval of scenes. J. Neurosci. 32:29 (2012), 10012–10020, 10.1523/jneurosci.1082-11.2012.
Paus, T., Keshavan, M., Giedd, J.N., Why do many psychiatric disorders emerge during adolescence?. (Dec) Nat. Rev. Neurosci. 9:12 (2008), 947–957, 10.1038/nrn2513.
Plachti, A., Eickhoff, S.B., Hoffstaedter, F., Patil, K.R., Laird, A.R., Fox, P.T., Amunts, K., Genon, S., Multimodal parcellations and extensive behavioral profiling tackling the hippocampus gradient. Dec 17 Cereb. Cortex 29:11 (2019), 4595–4612, 10.1093/cercor/bhy336.
Plachti, A., Kharabian, S., Eickhoff, S.B., Maleki Balajoo, S., Hoffstaedter, F., Varikuti, D.P., Jockwitz, C., Caspers, S., Amunts, K., Genon, S., Hippocampus co-atrophy pattern in dementia deviates from covariance patterns across the lifespan. Sep 1 Brain 143:9 (2020), 2788–2802, 10.1093/brain/awaa222.
Poppenk, J., Evensmoen, H.R., Moscovitch, M., Nadel, L., Long-axis specialization of the human hippocampus. (May) Trends Cogn. Sci. 17:5 (2013), 230–240, 10.1016/j.tics.2013.03.005.
R. Andrew Chambers, M.D., Jane, R., Taylor Ph.D., Marc, N., Potenza, M.D. Ph.D., Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am. J. Psychiatry 160:6 (2003), 1041–1052, 10.1176/appi.ajp.160.6.1041.
Reid, A.T., Bzdok, D., Langner, R., Fox, P.T., Laird, A.R., Amunts, K., Eickhoff, S.B., Eickhoff, C.R., Multimodal connectivity mapping of the human left anterior and posterior lateral prefrontal cortex. (Jun) Brain Struct. Funct. 221:5 (2016), 2589–2605, 10.1007/s00429-015-1060-5.
Riggins, T., Geng, F., Botdorf, M., Canada, K., Cox, L., Hancock, G.R., Protracted hippocampal development is associated with age-related improvements in memory during early childhood. Jul 1 NeuroImage 174 (2018), 127–137, 10.1016/j.neuroimage.2018.03.009.
Romero-Garcia, R., Whitaker, K.J., Váša, F., Seidlitz, J., Shinn, M., Fonagy, P., Dolan, R.J., Jones, P.B., Goodyer, I.M., Bullmore, E.T., Vértes, P.E., Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. 2018/05/01/ NeuroImage 171 (2018), 256–267, 10.1016/j.neuroimage.2017.12.060.
Satterthwaite, T.D., Elliott, M.A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M.E., Hopson, R., Jackson, C., Keefe, J., Riley, M., Mentch, F.D., Sleiman, P., Verma, R., Davatzikos, C., Hakonarson, H., Gur, R.C., Gur, R.E., Neuroimaging of the philadelphia neurodevelopmental cohort. 2014/02/01/ NeuroImage 86 (2014), 544–553, 10.1016/j.neuroimage.2013.07.064.
Schultz, W., Reward functions of the basal ganglia. (Jul) J. Neural Transm. (Vienna) 123:7 (2016), 679–693, 10.1007/s00702-016-1510-0.
Sekeres, M.J., Winocur, G., Moscovitch, M., The hippocampus and related neocortical structures in memory transformation. Jul 27 Neurosci. Lett. 680 (2018), 39–53, 10.1016/j.neulet.2018.05.006.
Shadmehr, R., Smith, M.A., Krakauer, J.W., Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33:1 (2010), 89–108, 10.1146/annurev-neuro-060909-153135.
Shah, A., Jhawar, S.S., Goel, A., Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. (Feb) J. Clin. Neurosci. 19:2 (2012), 289–298, 10.1016/j.jocn.2011.04.039.
Shah, P., Bassett, D.S., Wisse, L.E.M., Detre, J.A., Stein, J.M., Yushkevich, P.A., Shinohara, R.T., Pluta, J.B., Valenciano, E., Daffner, M., Wolk, D.A., Elliott, M.A., Litt, B., Davis, K.A., Das, S.R., Mapping the structural and functional network architecture of the medial temporal lobe using 7T MRI. (Feb) Hum. Brain Mapp. 39:2 (2018), 851–865, 10.1002/hbm.23887.
Solé-Padullés, C., Castro-Fornieles, J., de la Serna, E., Calvo, R., Baeza, I., Moya, J., Lázaro, L., Rosa, M., Bargalló, N., Sugranyes, G., Intrinsic connectivity networks from childhood to late adolescence: Effects of age and sex. (Feb) Dev. Cogn. Neurosci. 17 (2016), 35–44, 10.1016/j.dcn.2015.11.004.
Sterner, K.N., Weckle, A., Chugani, H.T., Tarca, A.L., Sherwood, C.C., Hof, P.R., Kuzawa, C.W., Boddy, A.M., Abbas, A., Raaum, R.L., Grégoire, L., Lipovich, L., Grossman, L.I., Uddin, M., Goodman, M., Wildman, D.E., Dynamic gene expression in the human cerebral cortex distinguishes children from adults. PLoS One, 7(5), 2012, e37714, 10.1371/journal.pone.0037714.
Sui, J., Huster, R., Yu, Q., Segall, J.M., Calhoun, V.D., Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. Nov 15 Neuroimage 102:Pt 1 (2014), 11–23, 10.1016/j.neuroimage.2013.09.044.
Tamnes, C.K., Bos, M.G.N., van de Kamp, F.C., Peters, S., Crone, E.A., Longitudinal development of hippocampal subregions from childhood to adulthood. (Apr) Dev. Cogn. Neurosci. 30 (2018), 212–222, 10.1016/j.dcn.2018.03.009.
Tang, L., Pruitt, P.J., Yu, Q., Homayouni, R., Daugherty, A.M., Damoiseaux, J.S., Ofen, N., Differential functional connectivity in anterior and posterior hippocampus supporting the development of memory formation [Original Research]. 2020-June-05 Front. Hum. Neurosci., 14(204), 2020, 10.3389/fnhum.2020.00204.
Telzer, E.H., Dopaminergic reward sensitivity can promote adolescent health: a new perspective on the mechanism of ventral striatum activation. 2016/02/01/ Dev. Cogn. Neurosci. 17 (2016), 57–67, 10.1016/j.dcn.2015.10.010.
Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B., Which fMRI clustering gives good brain parcellations?. Front Neurosci., 8, 2014, 167, 10.3389/fnins.2014.00167.
Urošević, S., Collins, P., Muetzel, R., Lim, K., Luciana, M., Longitudinal changes in behavioral approach system sensitivity and brain structures involved in reward processing during adolescence. (Sep) Dev. Psychol. 48:5 (2012), 1488–1500, 10.1037/a0027502.
van Duijvenvoorde, A.C., Peters, S., Braams, B.R., Crone, E.A., What motivates adolescents? Neural responses to rewards and their influence on adolescents' risk taking, learning, and cognitive control. (Nov) Neurosci. Biobehav Rev. 70 (2016), 135–147, 10.1016/j.neubiorev.2016.06.037.
Vijayakumar, N., Ball, G., Seal, M.L., Mundy, L., Whittle, S., Silk, T., The development of structural covariance networks during the transition from childhood to adolescence. May 4 Sci. Rep., 11(1), 2021, 9451, 10.1038/s41598-021-88918-w.
Vogel, J.W., La Joie, R., Grothe, M.J., Diaz-Papkovich, A., Doyle, A., Vachon-Presseau, E., Lepage, C., Vos de Wael, R., Thomas, R.A., Iturria-Medina, Y., Bernhardt, B., Rabinovici, G.D., Evans, A.C., A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. 2020/02/19 Nat. Commun., 11(1), 2020, 960, 10.1038/s41467-020-14518-3.
Walhovd, K.B., Tamnes, C.K., Fjell, A.M., Brain structural maturation and the foundations of cognitive behavioral development. (Apr) Curr. Opin. Neurol. 27:2 (2014), 176–184, 10.1097/wco.0000000000000074.
Woodburn, M., Bricken, C.L., Wu, Z., Li, G., Wang, L., Lin, W., Sheridan, M.A., Cohen, J.R., The maturation and cognitive relevance of structural brain network organization from early infancy to childhood. 2021/09/01/ NeuroImage, 238, 2021, 118232, 10.1016/j.neuroimage.2021.118232.
Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D., Large-scale automated synthesis of human functional neuroimaging data. 2011/08/01 Nat. Methods 8:8 (2011), 665–670, 10.1038/nmeth.1635.
Yee, Y., Fernandes, D.J., French, L., Ellegood, J., Cahill, L.S., Vousden, D.A., Spencer Noakes, L., Scholz, J., van Eede, M.C., Nieman, B.J., Sled, J.G., Lerch, J.P., Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity. Oct 1 NeuroImage 179 (2018), 357–372, 10.1016/j.neuroimage.2018.05.028.
Zhang, S., Ide, J.S., Li, C.-s R., Resting-state functional connectivity of the medial superior frontal cortex. Cereb. Cortex 22:1 (2011), 99–111, 10.1093/cercor/bhr088.
Zheng, A., Montez, D.F., Marek, S., Gilmore, A.W., Newbold, D.J., Laumann, T.O., Kay, B.P., Seider, N.A., Van, A.N., Hampton, J.M., Alexopoulos, D., Schlaggar, B.L., Sylvester, C.M., Greene, D.J., Shimony, J.S., Nelson, S.M., Wig, G.S., Gratton, C., McDermott, K.B., Raichle, M.E., Gordon, E.M., Dosenbach, N.U.F., Parallel hippocampal-parietal circuits for self- and goal-oriented processing. Proc. Natl. Acad. Sci., 118(34), 2021, e2101743118, 10.1073/pnas.2101743118.
Zielinski, B.A., Gennatas, E.D., Zhou, J., Seeley, W.W., Network-level structural covariance in the developing brain. Proc. Natl. Acad. Sci. 107:42 (2010), 18191–18196, 10.1073/pnas.1003109107.