Barents Sea; climate variability; ERA5; marine heatwaves; sea surface temperature; Oceanography; Global and Planetary Change; Aquatic Science; Water Science and Technology; Environmental Science (miscellaneous); Ocean Engineering
Abstract :
[en] Marine heatwaves (MHWs) can potentially alter ocean ecosystems with far-reaching ecological and socio-economic consequences. This study investigates the spatiotemporal evolution of the main MHW characteristics in the Barents Sea using high-resolution (0.25° × 0.25°) daily Sea Surface Temperature (SST) data from 1982 to 2020. The results reveal that the Barents Sea has experienced accelerated warming and several more MHWs in recent decades. Since 2004, an amplified increasing SST trend was observed across the entire Barents Sea, with a spatially averaged SST trend of 0.25 ± 0.18°C/decade and 0.58 ± 0.21°C/decade for the northern and southern Barents Sea, respectively. The annual mean MHW frequency, days, and duration over the entire Barents Sea increased by, respectively, 62, 73, and 31% from the pre- to the post-2004 period. More than half of all MHW days occurred in the last decade (2011–2020). The most intense MHW event occurred in summer 2016, which was also the warmest year during the study period. In general, the annual mean MHW frequency was relatively high in the northern Barents Sea, while the intensity and duration were higher in the southern Barents Sea. The highest annual MHW intensity and duration were observed in 2016, 2013, and 2020, respectively, while the highest annual MHW frequency was found in 2016. For the entire Barents Sea, the annual MHW frequency and duration increased significantly (p < 0.05) over the whole study period, with a trend of, respectively, 1.0 ± 0.4 events/decade, which is a doubling of the global average, and 2.4 ± 1.3 days/decade. In terms of the influence of climate variability on MHW characteristics, our findings revealed that the Eastern Atlantic Pattern (EAP) plays a significant role in controlling MHW characteristics, whereas the North Atlantic Oscillation (NAO) has no significant relationship. Sea ice concentrations were found to have a significant negative correlation with MHW characteristics. Strong positive correlations were observed between SST, surface air temperature, and MHW frequency, implying that as global warming continues, we can expect continued rising in MHW frequencies and days in the Barents Sea with huge implications for the ocean ecosystem.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Mohamed, Bayoumy Abdelaziz ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Nilsen, Frank; Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Skogseth, Ragnheid; Department of Arctic Geophysics, The University Centre in Svalbard, Longyearbyen, Norway
Language :
English
Title :
Marine Heatwaves Characteristics in the Barents Sea Based on High Resolution Satellite Data (1982–2020)
Arias-Ortiz A. Serrano O. Masqué P. Lavery P. S. Mueller U. Kendrick G. A. et al. (2018). A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8 338–344. 10.1038/s41558-018-0096-y
Årthun M. Eldevik T. Smedsrud L. H. Skagseth Ø. Ingvaldsen R. B. (2012). Quantifying the influence of atlantic heat on barents sea ice variability and retreat. J. Clim. 25 4736–4743.
Asbjørnsen H. Årthun M. Skagseth Ø. Eldevik T. (2020). Mechanisms underlying recent arctic atlantification. Geophys. Res. Lett. 47:e2020GL088036.
Banzon V. Smith T. M. Chin T. M. Liu C. Hankins W. (2016). A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8 165–176. 10.5194/essd-8-165-2016
Banzon V. Smith T. M. Steele M. Huang B. Zhang H.-M. (2020). Improved estimation of proxy sea surface temperature in the arctic. J. Atmos. Ocean. Technol. 37 341–349. 10.1175/JTECH-D-19-0177.1
Barton B. I. Lenn Y. D. Lique C. (2018). Observed atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr. 48 1849–1866. 10.1175/JPO-D-18-0003.1
Benthuysen J. A. Oliver E. C. J. Feng M. Marshall A. G. (2018). Extreme marine warming across tropical australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123 1301–1326. 10.1002/2017JC013326
Bojinski S. Verstraete M. Peterson T. C. Richter C. Simmons A. Zemp M. (2014). The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95 1431–1443. 10.1175/BAMS-D-13-00047.1
Bond N. A. Cronin M. F. Freeland H. Mantua N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42 3414–3420. 10.1002/2015GL063306
Chafik L. Nilsen J. E. Ø. Dangendorf S. (2017). Impact of north atlantic teleconnection patterns on northern european sea level. J. Mar. Sci. Eng. 5:43. 10.3390/JMSE5030043
Chafik L. Nilsson J. Skagseth Ø. Lundberg P. (2015). On the flow of Atlantic water and temperature anomalies in the Nordic Seas toward the Arctic Ocean. J. Geophys. Res. Oceans 120 7897–7918. 10.1002/2015JC011012
Chen K. Gawarkiewicz G. Kwon Y.-O. Zhang W. G. (2015). The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Ocean. 120, 4324–4339. 10.1002/2014JC010547
Chen K. Gawarkiewicz G. G. Lentz S. J. Bane J. M. (2014). Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119 218–227. 10.1002/2013JC009393
Dalpadado P. Arrigo K. R. Hjøllo S. S. Rey F. Ingvaldsen R. B. (2014). Productivity in the barents sea-response to recent climate variability. PLoS One 9:95273. 10.1371/journal.pone.0095273 24788513
Dalpadado P. Ingvaldsen R. B. Stige L. C. Bogstad B. Knutsen T. Ottersen G. et al. (2012). Climate effects on Barents Sea ecosystem dynamics. ICES J. Mar. Sci. 69 1303–1316. 10.1093/ICESJMS/FSS063
Di Lorenzo E. Mantua N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6 1042–1047. 10.1038/nclimate3082
Eriksen E. Bagøien E. Strand E. Primicerio R. Prokhorova T. Trofimov A. et al. (2020). The record-warm barents sea and 0-group fish response to abnormal conditions. Front. Mar. Sci. 7:338. 10.3389/FMARS.2020.00338
Frölicher T. L. Fischer E. M. Gruber N. (2018). Marine heatwaves under global warming. Nature 560 360–364. 10.1038/s41586-018-0383-9 30111788
Frölicher T. L. Laufkötter C. (2018). Emerging risks from marine heat waves. Nat. Commun. 9:650. 10.1038/s41467-018-03163-6 29440658
Garrabou J. Coma R. Bensoussan N. Bally M. Chevaldonné P. Cigliano M. et al. (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15 1090–1103. 10.1111/J.1365-2486.2008.01823.X
Hamed K. H. Ramachandra Rao A. (1998). A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204 182–196. 10.1016/S0022-1694(97)00125-X
Herbaut C. Houssais M. N. Close S. Blaizot A. C. (2015). Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep Res. Part I Oceanogr. Res. Pap. 106 97–115. 10.1016/j.dsr.2015.10.005
Hersbach H. Bell B. Berrisford P. Hirahara S. Horányi A. Muñoz-Sabater J. et al. (2020). The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 1999–2049. 10.1002/qj.3803
Hobday A. J. Alexander L. V. Perkins S. E. Smale D. A. Straub S. C. Oliver E. C. J. et al. (2016). A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141 227–238. 10.1016/j.pocean.2015.12.014
Hobday A. J. Oliver E. C. J. Gupta A. S. Benthuysen J. A. Burrows M. T. Donat M. G. et al. (2018). Categorizing and naming marine heatwaves. Oceanography 31 162–173. 10.5670/oceanog.2018.205
Holbrook N. J. Scannell H. A. Sen Gupta A. Benthuysen J. A. Feng M. Oliver E. C. J. et al. (2019). A global assessment of marine heatwaves and their drivers. Nat. Commun. 10:2624. 10.1038/s41467-019-10206-z 31201309
Holbrook N. J. Sen Gupta A. Oliver E. C. J. Hobday A. J. Benthuysen J. A. Scannell H. A. et al. (2020). Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1 482–493. 10.1038/s43017-020-0068-4
Hu S. Zhang L. Qian S. (2020). Marine heatwaves in the arctic region: variation in different ice covers. Geophys. Res. Lett. 47:e2020GL089329. 10.1029/2020GL089329
Huang B. Liu C. Banzon V. Freeman E. Graham G. Hankins B. et al. (2021a). Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. J. Clim. 34 2923–2939. 10.1175/JCLI-D-20-0166.1
Huang B. Wang Z. Yin X. Arguez A. Graham G. Liu C. et al. (2021b). Prolonged marine heatwaves in the arctic: 1982-2020. Geophys. Res. Lett. 48:e2021GL095590. 10.1029/2021GL095590
Hughes T. P. Kerry J. T. Álvarez-Noriega M. Álvarez-Romero J. G. Anderson K. D. Baird A. H. et al. (2017). Global warming and recurrent mass bleaching of corals. Nature 543 373–377. 10.1038/nature21707 28300113
Hunt G. L. Blanchard A. L. Boveng P. Dalpadado P. Drinkwater K. F. Eisner L. et al. (2013). The barents and chukchi seas: comparison of two arctic shelf ecosystems. J. Mar. Syst. 109-110 43–68. 10.1016/J.JMARSYS.2012.08.003
Ibrahim O. Mohamed B. Nagy H. (2021). Spatial variability and trends of marine heat waves in the eastern mediterranean sea over 39 years. J. Mar. Sci. Eng. 9:643. 10.3390/jmse9060643
Ingvaldsen R. Loeng H. Asplin L. (2002). Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Cont. Shelf Res. 22 505–519. 10.1016/S0278-4343(01)00070-X
Ingvaldsen R. B. Asplin L. Loeng H. (2004). The seasonal cycle in the Atlantic transport to the Barents Sea during the years 1997–2001. Cont. Shelf Res. 24 1015–1032. 10.1016/J.CSR.2004.02.011
Jakowczyk M. Stramska M. (2014). Spatial and temporal variability of satellite-derived sea surface temperature in the Barents Sea. Int. J. Remote Sens. 35 6545–6560. 10.1080/01431161.2014.958247
Kueh M.-T. Lin C.-Y. (2020). The 2018 summer heatwaves over northwestern Europe and its extended-range prediction. Sci. Rep. 10:19283. 10.1038/s41598-020-76181-4 33159097
Li Y. Ren G. Wang Q. You Q. (2019). More extreme marine heatwaves in the China Seas during the global warming hiatus. Environ. Res. Lett. 14:104010. 10.1088/1748-9326/ab28bc
Lien V. S. Schlichtholz P. Skagseth Ø. Vikebø F. B. (2017). Wind-driven atlantic water flow as a direct mode for reduced barents sea ice cover. J. Clim. 30 803–812. 10.1175/JCLI-D-16-0025.1
Lind S. Ingvaldsen R. B. Furevik T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8 634–639. 10.1038/s41558-018-0205-y
Loeng H. (1991). Features of the physical oceanographic conditions of the Barents Sea. Polar Res. 10 5–18. 10.3402/polar.v10i1.6723
Manta G. de Mello S. Trinchin R. Badagian J. Barreiro M. (2018). The 2017 record marine heatwave in the Southwestern Atlantic shelf. Geophys. Res. Lett. 45 12449–12456. 10.1029/2018GL081070
Marx W. Haunschild R. Bornmann L. (2021). Heat waves: a hot topic in climate change research. Theor. Appl. Climatol. 146 781–800. 10.1007/s00704-021-03758-y 34493886
Mawren D. Hermes J. Reason C. J. C. (2021). Marine heatwaves in the mozambique channel. Clim. Dyn. 58 305–327. 10.1007/S00382-021-05909-3
Mills K. E. Pershing A. J. Brown C. J. Chen Y. Chiang F. S. Holland D. S. et al. (2013). Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26 191–195. 10.5670/OCEANOG.2013.27
Mohamed B. Nagy H. Ibrahim O. (2021). Spatiotemporal variability and trends of marine heat waves in the red sea over 38 years. J. Mar. Sci. Eng. 9:842. 10.3390/JMSE9080842
Nilsen F. Skogseth R. Vaardal-Lunde J. Inall M. (2016). A simple shelf circulation model: intrusion of atlantic water on the west spitsbergen shelf. J. Phys. Oceanogr. 46 1209–1230. 10.1175/JPO-D-15-0058.1
Olita A. Sorgente R. Natale S. Gaberšek S. Ribotti A. Bonanno A. et al. (2007). Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3 273–289. 10.5194/OS-3-273-2007
Oliver E. C. J. (2019). Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53 1653–1659. 10.1007/S00382-019-04707-2
Oliver E. C. J. Benthuysen J. A. Bindoff N. L. Hobday A. J. Holbrook N. J. Mundy C. N. et al. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8:16101. 10.1038/ncomms16101 28706247
Oliver E. C. J. J. Donat M. G. Burrows M. T. Moore P. J. Smale D. A. Alexander L. V. et al. (2018). Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:1324. 10.1038/s41467-018-03732-9 29636482
Olsen E. Aanes S. Mehl S. Holst J. C. Aglen A. Gjøsæter H. (2010). Cod, haddock, saithe, herring, and capelin in the Barents Sea and adjacent waters: a review of the biological value of the area. ICES J. Mar. Sci. 67 87–101. 10.1093/ICESJMS/FSP229
Onarheim I. H. Eldevik T. Årthun M. Ingvaldsen R. B. Smedsrud L. H. (2015). Skillful prediction of Barents Sea ice cover. Geophys. Res. Lett. 42 5364–5371. 10.1002/2015GL064359
Oziel L. Neukermans G. Ardyna M. Lancelot C. Tison J.-L. Wassmann P. et al. (2017). Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. Ocean. 122 5121–5139. 10.1002/2016JC012582
Pearce A. F. Feng M. (2013). The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111-112 139–156. 10.1016/J.JMARSYS.2012.10.009
Reynolds R. W. Smith T. M. Liu C. Chelton D. B. Casey K. S. Schlax M. G. (2007). Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20 5473–5496. 10.1175/2007JCLI1824.1
Sandler D. Harnik N. (2020). Future wintertime meridional wind trends through the lens of subseasonal teleconnections. Weather Clim. Dyn. 1 427–443. 10.5194/WCD-1-427-2020
Scannell H. A. Pershing A. J. Alexander M. A. Thomas A. C. Mills K. E. (2016). Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43 2069–2076. 10.1002/2015GL067308
Schauer U. Loeng H. Rudels B. Ozhigin V. K. Dieck W. (2002). Atlantic water flow through the barents and Kara seas. Deep Sea Res. Part I Oceanogr. Res. Pap. 49 2281–2298. 10.1016/S0967-0637(02)00125-5
Schlichtholz P. (2019). Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Sci. Rep. 9:13692. 10.1038/s41598-019-49965-6 31548604
Screen J. A. Simmonds I. (2010). The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464 1334–1337. 10.1038/nature09051 20428168
Selig E. R. Casey K. S. Bruno J. F. (2010). New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Glob. Ecol. Biogeogr. 19 397–411. 10.1111/J.1466-8238.2009.00522.X
Serreze M. C. Barry R. G. (2011). Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77 85–96. 10.1016/J.GLOPLACHA.2011.03.004
Skagseth Ø. (2008). Recirculation of atlantic water in the western barents Sea. Geophys. Res. Lett. 35:L11606. 10.1029/2008GL033785
Skagseth Ø. Eldevik T. Årthun M. Asbjørnsen H. Lien V. S. Smedsrud L. H. (2020). Reduced efficiency of the Barents Sea cooling machine. Nat. Clim. Change 10 661–666. 10.1038/s41558-020-0772-6
Skogseth R. Olivier L. L. A. Nilsen F. Falck E. Fraser N. Tverberg V. et al. (2020). Variability and decadal trends in the Isfjorden (Svalbard) ocean climate and circulation – an indicator for climate change in the European Arctic. Prog. Oceanogr. 187:102394. 10.1016/j.pocean.2020.102394
Smale D. A. Wernberg T. Oliver E. C. J. Thomsen M. Harvey B. P. Straub S. C. et al. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9 306–312. 10.1038/s41558-019-0412-1
Thomsen M. S. Mondardini L. Alestra T. Gerrity S. Tait L. South P. M. et al. (2019). Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6:84. 10.3389/FMARS.2019.00084
Toole J. M. Timmermans M.-L. Perovich D. K. Krishfield R. A. Proshutinsky A. Richter-Menge J. A. (2010). Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res. 115:10018. 10.1029/2009JC005660
Trainer V. L. Kudela R. M. Hunter M. V. Adams N. G. McCabe R. M. (2020). Climate extreme seeds a new domoic acid hotspot on the US west coast. Front. Clim. 2:571836. 10.3389/FCLIM.2020.571836
von Storch H. Zwiers F. W. (1999). Statistical Analysis in Climate Research. Cambridge: Cambridge University Press. 10.1017/CBO9780511612336
Wang F. Shao W. Yu H. Kan G. He X. Zhang D. et al. (2020). Re-evaluation of the power of the mann-kendall test for detecting monotonic trends in hydrometeorological time series. Front. Earth Sci. 8:14. 10.3389/feart.2020.00014
Wilks D. S. (2011). Statistical Methods in the Atmospheric Sciences. Cambridge, MA: Academic Press.
Zhao Z. Marin M. (2019). A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 4:1124. 10.21105/joss.01124