clinical mastitis; dairy cow; mid-infrared (MIR) spectroscopy; partial least squares discriminant analysis; somatic cell count; Animal Science and Zoology; Veterinary (all); General Veterinary
Abstract :
[en] Monitoring for mastitis on dairy farms is of particular importance, as it is one of the most prevalent bovine diseases. A commonly used indicator for mastitis monitoring is somatic cell count. A supplementary tool to predict mastitis risk may be mid-infrared (MIR) spectroscopy of milk. Because bovine health status can affect milk composition, this technique is already routinely used to determine standard milk components. The aim of the present study was to compare the performance of models to predict clinical mastitis based on MIR spectral data and/or somatic cell count score (SCS), and to explore differences of prediction accuracies for acute and chronic clinical mastitis diagnoses. Test-day data of the routine Austrian milk recording system and diagnosis data of its health monitoring, from 59,002 cows of the breeds Fleckvieh (dual purpose Simmental), Holstein Friesian and Brown Swiss, were used. Test-day records within 21 days before and 21 days after a mastitis diagnosis were defined as mastitis cases. Three different models (MIR, SCS, MIR + SCS) were compared, applying Partial Least Squares Discriminant Analysis. Results of external validation in the overall time window (-/+21 days) showed area under receiver operating characteristic curves (AUC) of 0.70 when based only on MIR, 0.72 when based only on SCS, and 0.76 when based on both. Considering as mastitis cases only the test-day records within 7 days after mastitis diagnosis, the corresponding areas under the curve were 0.77, 0.83 and 0.85. Hence, the model combining MIR spectral data and SCS was performing best. Mastitis probabilities derived from the prediction models are potentially valuable for routine mastitis monitoring for farmers, as well as for the genetic evaluation of the trait udder health.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Rienesl, Lisa ; Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
Khayatzdadeh, Negar; Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
Köck, Astrid; ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
Egger-Danner, Christa; ZuchtData EDV-Dienstleistungen GmbH, 1200 Vienna, Austria
Gengler, Nicolas ; Regional Association for Performance Testing in Livestock Breeding of Baden-Wuerttemberg (LKV-Baden-Wuerttemberg), 70067 Stuttgart, Germany
Grelet, Clément ; Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium
This work was conducted within COMET-Project D4Dairy (Digitalization, Data integration, Detection and Decision Support in Dairying, project 872039), which is supported by BMK, BMDW and the provinces of Lower Austria and Vienna in the framework of the COMET-Competence Centers for Excellent Technologies. The COMET program is handled by the FFG. Additional support was provided by the INTERREG NWE Project HappyMoo.
Halasa T. Huijps K. Østerås O. Hogeveen H. Economic Effects of Bovine Mastitis and Mastitis Management: A Review Vet. Q. 2007 29 18 31 10.1080/01652176.2007.9695224 17471788
Heikkilä A.-M. Nousiainen J.I. Pyörälä S. Costs of Clinical Mastitis with Special Reference to Premature Culling J. Dairy Sci. 2011 95 139 150 10.3168/jds.2011-4321 22192193
Seegers H. Fourichon C. Beaudeau F. Production Effects Related to Mastitis and Mastitis Economics in Dairy Cattle Herds Henri Vet. Res. 2003 34 475 491 10.1051/vetres:2003027 14556691
Egger-Danner C. Fuerst-Waltl B. Obritzhauser W. Fuerst C. Schwarzenbacher H. Grassauer B. Mayerhofer M. Koeck A. Recording of Direct Health Traits in Austria-Experience Report with Emphasis on Aspects of Availability for Breeding Purposes J. Dairy Sci. 2012 95 2765 2777 10.3168/jds.2011-4876
Winter P. Burvenich C. Hogeveen H. Neijenhuis F. Rasmussen M.D. Schweigert F.J. de Spiegeleer B. Zehle H.-H. Klinik Der Mastitisformen Praktischer Leitfaden Mastitis Petra Winter Vienna, Austria 2009 95 101
Blowey R.W. Edmondson P. Mastitis Control in Dairy Herds 2nd ed. CAB International Wallington, UK 2010 9780080453705.
Sharma N. Singh N.K. Bhadwal M.S. Relationship of Somatic Cell Count and Mastitis: An Overview Asian-Australasian J. Anim. Sci. 2011 24 429 438 10.5713/ajas.2011.10233
International Dairy Federation Guidelines for the Use and Interpretation of Bovine Milk Somatic Cell Count Bulletin no 466/2013 International Dairy Federation Brussels, Belgium 2013
Harmon R.J. Physiology of Mastitis and Factors Affecting Somatic Cell Counts J. Dairy Sci. 1994 77 2103 2112 10.3168/jds.S0022-0302(94)77153-8
Grelet C. Bastin C. Gelé M. Davière J.B. Johan M. Werner A. Reding R. Fernandez Pierna J.A. Colinet F.G. Dardenne P. et al. Development of Fourier Transform Mid-Infrared Calibrations to Predict Acetone, β-Hydroxybutyrate, and Citrate Contents in Bovine Milk through a European Dairy Network J. Dairy Sci. 2016 99 4816 4825 10.3168/jds.2015-10477
Soyeurt H. Dehareng F. Gengler N. McParland S. Wall E. Berry D.P. Coffey M. Dardenne P. Mid-Infrared Prediction of Bovine Milk Fatty Acids across Multiple Breeds, Production Systems, and Countries J. Dairy Sci. 2011 94 1657 1667 10.3168/jds.2010-3408
Bonfatti V. Di Martino G. Carnier P. Effectiveness of Mid-Infrared Spectroscopy for the Prediction of Detailed Protein Composition and Contents of Protein Genetic Variants of Individual Milk of Simmental Cows J. Dairy Sci. 2011 94 5776 5785 10.3168/jds.2011-4401
Soyeurt H. Bruwier D. Romnee J.M. Gengler N. Bertozzi C. Veselko D. Dardenne P. Potential Estimation of Major Mineral Contents in Cow Milk Using Mid-Infrared Spectrometry J. Dairy Sci. 2009 92 2444 2454 10.3168/jds.2008-1734
De Marchi M. Toffanin V. Cassandro M. Penasa M. Invited Review: Mid-Infrared Spectroscopy as Phenotyping Tool for Milk Traits J. Dairy Sci. 2014 97 1171 1186 10.3168/jds.2013-6799 24440251
Tiplady K.M. Lopdell T.J. Littlejohn M.D. Garrick D.J. The Evolving Role of Fourier-Transform Mid-Infrared Spectroscopy in Genetic Improvement of Dairy Cattle J. Anim. Sci. Biotechnol. 2020 11 1 13 10.1186/s40104-020-00445-2 32322393
McParland S. Lewis E. Kennedy E. Moore S.G. McCarthy B. O’Donovan M. Butler S.T. Pryce J.E. Berry D.P. Mid-Infrared Spectrometry of Milk as a Predictor of Energy Intake and Efficiency in Lactating Dairy Cows J. Dairy Sci. 2014 97 5863 5871 10.3168/jds.2014-8214 24997658
Van Knegsel A.T.M. van der Drift S.G.A. Horneman M. de Roos A.P.W. Kemp B. Graat E.A.M. Short Communication: Ketone Body Concentration in Milk Determined by Fourier Transform Infrared Spectroscopy: Value for the Detection of Hyperketonemia in Dairy Cows J. Dairy Sci. 2010 93 3065 3069 10.3168/jds.2009-2847 20630223
Mineur A. Hammami H. Grelet C. Egger-Danner C. Sölkner J. Gengler N. Short Communication: Investigation of the Temporal Relationships between Milk Mid-Infrared Predicted Biomarkers and Lameness Events in Later Lactation J. Dairy Sci. 2020 103 4475 4482 10.3168/jds.2019-16826
Ho P.N. Bonfatti V. Luke T.D.W. Pryce J.E. Classifying the Fertility of Dairy Cows Using Milk Mid-Infrared Spectroscopy J. Dairy Sci. 2019 102 10460 10470 10.3168/jds.2019-16412
Delhez P. Ho P.N. Gengler N. Soyeurt H. Pryce J.E. Diagnosing the Pregnancy Status of Dairy Cows: How Useful Is Milk Mid-Infrared Spectroscopy? J. Dairy Sci. 2020 103 3264 3274 10.3168/jds.2019-17473
Rienesl L. Pfeiffer P. Khayatzadeh N. Köck A. Dale L. Werner A. Grelet C. Gengler N. Auer F.J. Egger-Danner C. et al. Prediction of Pregnancy State from Milk Mid-Infrared (MIR) Spectroscopy in Dairy Cows Acta Fytotech. Zootech. 2020 23 224 232 10.15414/afz.2020.23.mi-fpap.224-232
Soyeurt H. Bastin C. Colinet F.G. Arnould V.M.-R. Berry D.P. Wall E. Dehareng F. Nguyen H.N. Dardenne P. Schefers J. et al. Mid-Infrared Prediction of Lactoferrin Content in Bovine Milk: Potential Indicator of Mastitis Animal 2012 6 1830 1838 10.1017/S1751731112000791
Dale L. Werner A. “MastiMIR”-Ein Mastitis-Frühwarnsystem Basierend Auf MIR-Spektren Proceedings of the Vortragstagung der DCfZ und GfT Stuttgart, Germany 20–21 September 2017
Rienesl L. Khayatzadeh N. Köck A. Dale L. Werner A. Grelet C. Gengler N. Auer F.J. Egger-Danner C. Massart X. et al. Mastitis Detection from Milk Mid-Infrared (MIR) Spectroscopy in Dairy Cows Acta Univ. Agric. Silvic. Mendelianae Brun. 2019 67 1221 1226 10.11118/actaun201967051221
Suntinger M. Fuerst-Waltl B. Obritzhauser W. Firth C.L. Köck A. Egger-Danner C. Usability of Bacteriological Milk Analyses for Genetic Improvement of Udder Health in Austrian Fleckvieh Cows J. Dairy Sci. 2022 105 5167 5177 10.3168/jds.2021-20832 35346466
The R Development Core Team A Language and Environment for Statistical Computing R Foundation for Statistical Computing Vienna, Austria 2022
Grelet C. Fernández Pierna J.A. Dardenne P. Baeten V. Dehareng F. Standardization of Milk Mid-Infrared Spectra from a European Dairy Network J. Dairy Sci. 2015 98 2150 2160 10.3168/jds.2014-8764
Grelet C. Pierna J.A.F. Dardenne P. Soyeurt H. Vanlierde A. Colinet F. Bastin C. Gengler N. Baeten V. Dehareng F. Standardization of Milk Mid-Infrared Spectrometers for the Transfer and Use of Multiple Models J. Dairy Sci. 2017 100 7910 7921 10.3168/jds.2017-12720 28755945
Grelet C. Dardenne P. Soyeurt H. Fernandez J.A. Vanlierde A. Stevens F. Gengler N. Dehareng F. Large-Scale Phenotyping in Dairy Sector Using Milk MIR Spectra: Key Factors Affecting the Quality of Predictions Methods 2021 186 97 111 10.1016/j.ymeth.2020.07.012 32763376
Vanlierde A. Vanrobays M.-L. Dehareng F. Froidmont E. Soyeurt H. McParland S. Lewis E. Deighton M.H. Grandl F. Kreuzer M. et al. Hot Topic: Innovative Lactation-Stage-Dependent Prediction of Methane Emissions from Milk Mid-Infrared Spectra J. Dairy Sci. 2015 98 5740 5747 10.3168/jds.2014-8436
Gengler N. Tijani A. Wiggans G.R. Misztal I. Estimation of (Co)Variance Function Coefficients for Test Day Yield with a Expectation-Maximization Restricted Maximum Likelihood Algorithm J. Dairy Sci. 1999 82 1849.e1 1849.e23 10.3168/jds.S0022-0302(99)75417-2
Ali A.K.A. Shook G.E. An Optimum Transformation for Somatic Cell Concentration in Milk J. Dairy Sci. 1980 63 487 490 10.3168/jds.S0022-0302(80)82959-6
Kuhn M. Building Predictive Models in R Using the Caret Package J. Stat. Softw. 2008 28 1 26 10.18637/jss.v028.i05
Lantz B. Machine Learning with R 2nd ed. Packt Publishing Ltd. Birmingham, UK 2015 9781784393908
De Haas Y. Barkema H.W. Veerkamp R.F. The Effect of Pathogen-Specific Clinical Mastitis on the Lactation Curve for Somatic Cell Count J. Dairy Sci. 2002 85 1314 1323 10.3168/jds.S0022-0302(02)74196-9
Svensson C. Nyman A.K. Waller K.P. Emanuelson U. Effects of Housing, Management, and Health of Dairy Heifers on First-Lactation Udder Health in Southwest Sweden J. Dairy Sci. 2006 89 1990 1999 10.3168/jds.S0022-0302(06)72266-4
Steeneveld W. Hogeveen H. Barkema H.W. Van Den Broek J. Huirne R.B.M. The Influence of Cow Factors on the Incidence of Clinical Mastitis in Dairy Cows J. Dairy Sci. 2008 91 1391 1402 10.3168/jds.2007-0705 18349231
Dehareng F. Delfosse C. Froidmont E. Soyeurt H. Martin C. Gengler N. Vanlierde A. Dardenne P. Potential Use of Milk Mid-Infrared Spectra to Predict Individual Methane Emission of Dairy Cows Animal 2012 6 1694 1701 10.1017/S1751731112000456 23031566