[en] The problem of bifurcating reaction paths is revisited by wave packet (WP) dynamics. The pitchfork model connecting five stationary points-a reactive, two transition structures and two enantiomeric products-is characterized by a Valley Ridge inflection point (VRI) where WP could leave the standard intrinsic reaction path. We question the role of such a VRI point to determine whether the mechanism is sequential or concerted. WP simulations on two-dimensional minimum energy surfaces are carried out in the benchmark case of the methoxy radical isomerization H3CO-->H2COH. The ab initio potential energy surface (PES) is fitted to an analytical model which is bent to analyze the incidence of geometrical parameters on the WP behavior. For each of these generated PES, the WP width in the entrance valley is the main factor which conditions the behavior on the unstable ridge. The WP evolution is also analyzed in terms of nonadiabatic transitions among adiabatic channels along the reaction coordinate. Finally, the location of VRI points according to an invariant definition is discussed. (C) 2003 American Institute of Physics.
Disciplines :
Chemistry Physics
Author, co-author :
Lasorne, Benjamin
Dive, Georges ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Lauvergnat, David
Desouter, Michèle ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Language :
English
Title :
Wave packet dynamics along bifurcating reaction paths
Publication date :
01 April 2003
Journal title :
Journal of Chemical Physics
ISSN :
0021-9606
eISSN :
1089-7690
Publisher :
Amer Inst Physics, Melville, United States - New York
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99 (1980).
W. H. Miller, J. Phys. Chem. 87, 3811 (1983).
K. Fukui, J. Phys. Chem. 74, 4161 (1970).
C. Gonzales and H. B. Schlegel, J. Chem. Phys. 90, 2154 (1989).
C. Gonzales and H. B. Schlegel, J. Phys. Chem. 94, 5523 (1990).
P. Pechukas, J. Chem. Phys. 64, 1516 (1976).
X. Chapuisat, in The Reaction Path in Chemistry: Current Approaches and Perspectives, edited by D. Heidrich (Kluwer Academic, Dordrecht, 1995), p. 39.
J.-Y. Fang and S. Hammes-Schiffer, J. Chem. Phys. 109, 7051 (1998).
H. Ushiyama and K. Takatsuka, J. Chem. Phys. 106, 7023 (1997).
H. Metiu, J. Ross, R. Silbey, and T. F. George, J. Chem. Phys. 61, 3200 (1974).
J. Baker and P. M. W. Gill, J. Comput. Chem. 9, 465 (1988).
M. Hirsch, W. Quapp, and D. Heidrich, Phys. Chem. Chem. Phys. 1, 5291 (1999).
W. Quapp and V. Melnikov, Phys. Chem. Chem. Phys. 3, 2735 (2001).
W. Quapp and D. Heidrich, J. Mol. Struct. 585, 105 (2002).
Y. Kumeda and T. Taketsugu, J. Chem. Phys. 113, 477 (2000).
W. A. Kraus and A. E. DePristo, Theor. Chim. Acta 69, 309 (1986).
T. Taketsugu and Y. Kumeda, J. Chem. Phys. 114, 6973 (2001).
T. Taketsugu and T. Hirano, J. Chem. Phys. 99, 9806 (1993).
T. Taketsugu, N. Tajima, and K. Hirao, J. Chem. Phys. 105, 1933 (1996).
T. Yanai, T. Taketsugu, and K. Hirao, J. Chem. Phys. 107, 1137 (1997).
S. M. Colwell and N. C. Handy, J. Chem. Phys. 82, 1281 (1984).
M. N. Ramquet, G. Dive, and D. Dehareng, J. Chem. Phys. 112, 4923 (2000).
G. L. Hofacker, Z. Naturforsch. A A18, 607 (1963).
J. C. Light and Z. Bacic, J. Chem. Phys. 87, 4008 (1987).
N. Rougeau, S. Marcotte, and C. Kubach, J. Chem. Phys. 105, 8653 (1996).
N. Rougeau, G. Nyman, and C. Kubach, Phys. Chem. Chem. Phys. 1, 1991 (1999).
D. Luckhaus, J. Chem. Phys. 113, 1329 (2000).
D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002).
P. Valtazanos and K. Ruedenberg, Theor. Chem. Acc. 100, 285 (1998).
M. V. Basilevsky, Theor. Chim. Acta 72, 63 (1987).
H. B. Schlegel, J. Chem. Soc., Faraday Trans. 90, 1569 (1994).
R. Palmeiros, L. M. Frutos, and O. Castao, Int. J. Quantum Chem. 86, 422 (2002).
M. Hirsch and W. Quapp, J. Comput. Chem. 23, 887 (2002).
J. Gonzalez, X. Jimnez, and J. M. Bofill, J. Chem. Phys. 116, 8713 (2002).
D. Heidrich, W. Kliesch, and W. Quapp, Properties of Chemically Interesting Potential Energy Hypersurfaces, Lecture Notes in Chemistry (Springer-Verlag, Berlin, 1991), Vol. 56.
W. Quapp, in The Reaction Path in Chemistry: Current Approaches and Perspectives, edited by D. Heidrich (Kluwer Academic, Dordrecht, 1995), p. 95.
P. G. Mezey, Potential Energy Hypersurfaces (Elsevier Science, Amsterdam, 1987).
B. Podolsky, Phys. Rev. 32, 812 (1928).
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (McGraw-Hill, New York, 1955).
A. Nauts and X. Chapuisat, Mol. Phys. 55, 1287 (1985).
X. Chapuisat, A. Nauts, and J.-P. Brunet, Mol. Phys. 72, 1 (1991).
D. J. Wales, J. Chem. Phys. 3926 (2000).
W. Quapp, J. Chem. Phys. 114, 609 (2001).
H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry (Van Nostrand, Princeton, NJ, 1943).
E. Bosch, M. Moreno, J. M. Lluch, and J. Betran, Chem. Phys. Lett. 160, 543 (1989).
H. Bettinger, P. Schreiner, P. v. R. Schleyer, and H. Schaefer, J. Phys. Chem. 100, 16147 (1996).
T. Taketsugu and T. Hirano, J. Chem. Phys. 99, 9806 (1993).
D. E. Powers, M. B. Pushkarsky, and T. A. Miller, J. Chem. Phys. 106, 6863 (1997).
L. Salem, Chem. Phys. Lett. 3, 99, (1969).
R. G. Pearson, Acc. Chem. Res. 4, 152 (1971).
E. Baloïtcha, B. Lasorne, D. Lauvergnat, G. Dive, Y. Justum, and M. Desouter-Lecomte, J. Chem. Phys. 117, 727 (2002).
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian 98, Gaussian, Inc. Pittsburgh, PA, 1998.
H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).
J. B. Hadder and J. H. Frederick, J. Chem. Phys. 97, 3500 (1992).
M. Menou and X. Chapuisat, J. Mol. Spectrosc. 159, 300 (1993).
F. Gatti, Y. Justum, M. Menou, A. Nauts, and X. Chapuisat, J. Mol. Spectrosc. 181, 403 (1997).
D. Lauvergnat, A. Nauts, Y. Justum, and X. Chapuisat, J. Chem. Phys. 114, 6592 (2001).
Y. Ohtsuki, K. Nakagami, Y. Fujimara, W. Zhu, and H. Rabitz, J. Chem. Phys. 114, 8867 (2001).
K. Hoki, L. Gonzalez, and Y. Fujimara, J. Chem. Phys. 116, 8799 (2002).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.