Ackerman S.H., Tzagoloff A. Identification of two nuclear genes (ATP11, ATP12) required for assembly of the yeast F1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 1990; 87: 4986–4990
Alfonzo M., Kandrach M.A., Racker E.. Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump. Journal of Bioenergetics and Biomembranes 1981; 13: 375–391
Allegretti M., Klusch N., Mills D.J., et al. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature 2015; 521: 237–240
Alston C.L., Veling M.T., Heidler J., et al. Pathogenic bi-allelic mutations in NDUFAF8 cause Leigh syndrome with an isolated complex I deficiency. American Journal of Human Genetics 2020; 106: 92–101
Armenteros J.J.A., Salvatore M., Emanuelsson O., et al. Detecting sequence signals in targeting peptides using deep learning. Life Science Alliance 2019; 2: e201900429
Arselin G., Vaillier J., Salin B., et al. The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. The Journal of Biological Chemistry 2004; 279: 40392–40399
Atkinson A., Smith P., Fox J.L., et al. The LYR protein Mzm1 functions in the insertion of the Rieske Fe/S protein in yeast mitochondria. Molecular and Cellular Biology 2011; 31: 3988–3996
Atteia A., Adrait A., Brugière S., et al. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Molecular Biology and Evolution 2009; 26: 1533–1548
Atteia A., Dreyfus G., González-Halphen D. Characterization of the α and β-subunits of the F0F1-ATPase from the alga Polytomella spp., a colorless relative of Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1997; 1320: 275–284
Atteia A., Franzén L.G. Identification, cDNA sequence and deduced amino acid sequence of the mitochondrial Rieske iron-sulfur protein from the green alga Chlamydomonas reinhardtii implications for protein targeting and subunit interaction. European Journal of Biochemistry 1996; 237: 792–799
Atteia A., van Lis R., Gelius-Dietrich G., et al. Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. The Journal of Biological Chemistry 2006; 281: 9909–9918
Azam T., Przybyla-Toscano J., Vignols F., et al. The Arabidopsis mitochondrial glutaredoxin GRXS15 provides [2Fe-2S] clusters for ISCA-mediated [4Fe-4S] cluster maturation. International Journal of Molecular Sciences 2020a; 21: E9237
Azam T., Przybyla-Toscano J., Vignols F., et al. [4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins. The Journal of Biological Chemistry 2020b; 295: 18367–18378
Babot M., Birch A., Labarbuta P., et al. Characterisation of the active/de-active transition of mitochondrial complex I. Biochimica et Biophysica Acta 2014; 1837: 1083–1092
Balabaskaran N.P., Dudkina N.V., Kane L.A., et al. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila. PLoS Biology 2010; 8: e1000418–e1000418
Baradaran R., Berrisford J.M., Minhas G.S., et al. Crystal structure of the entire respiratory complex I. Nature 2013; 494: 443–448
Barbieri R.M., Larosa V., Nouet C., et al. A forward genetic screen identifies mutants deficient for mitochondrial complex I assembly in Chlamydomonas reinhardtii. Genetics 2011; 188: 349–358
Baurain D., Dinant M., Coosemans N., et al. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiology 2003; 131: 1418–1430
Belt K., Van Aken O., Murcha M., et al. An assembly factor promotes assembly of flavinated SDH1 into the succinate dehydrogenase complex. Plant Physiology 2018; 177: 1439–1452
Bennoun P., Delosme M. Chloroplast suppressors that act on a mitochondrial mutation in Chlamydomonas reinhardtii. Molecular and General Genetics 1999; 262: 85–89
Berrisford J.M., Baradaran R., Sazanov L.A. Structure of bacterial respiratory complex I. Biochimica et Biophysica Acta 2004 2016; 1857: 892–901
Blum T.B., Hahn A., Meier T., et al. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proceedings of the National Academy of Sciences of the United States of America 2019; 116: 4250–4255
Boer P.H., Gray M.W. Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. The EMBO Journal 1988a; 7: 3501–3508
Boer P.H., Gray M.W. Transfer RNA genes and the genetic code in Chlamydomonas reinhardtii mitochondria. Current Genetics 1988b; 14: 583–590
Bonnard G., Gobert A., Arrivé M., et al. Transfer RNA maturation in Chlamydomonas mitochondria, chloroplast and the nucleus by a single RNase P protein. The Plant Journal 2016; 87: 270–280
Boulouis A., Drapier D., Razafimanantsoa H., et al. Spontaneous dominant mutations in Chlamydomonas highlight ongoing evolution by gene diversification. The Plant Cell 2015; 27: 984–1001
Braun H.P., Binder S., Brennicke A., et al. The life of plant mitochondrial complex I. Mitochondrion 2014; 19 Pt B: 295–313
Braymer J.J., Freibert S.A., Rakwalska-Bange M., et al. Mechanistic concepts of iron-sulfur protein biogenesis in biology. Biochimica Biophysica Acta. Molecular Cell Research 2020; 118863
Bych K., Kerscher S., Netz D.J.A., et al. The iron-sulphur protein Ind1 is required for effective complex I assembly. The EMBO Journal 2008; 27: 1736–1746
Cabezón E., Montgomery M.G., Leslie A.G.W., et al. The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nature Structural Biology 2003; 10: 744–IF750
Cabrera-Orefice A., Yoga E.G., Wirth C., et al. Locking loop movement in the ubiquinone pocket of complex I disengages the proton pumps. Nature Communications 2018; 9: 4500–4500
Cahoon A.B., Qureshi A.A. Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria. Current Genetics 2018; 64: 1321–1333
Cano-Estrada A., Vázquez-Acevedo M., Villavicencio-Queijeiro A., et al. Subunit-subunit interactions and overall topology of the dimeric mitochondrial ATP synthase of Polytomella sp. Biochimica et Biophysica Acta 2010; 1797: 1439–1448
Cardol P., Boutaffala L., Memmi S., et al. In Chlamydomonas, the loss of ND5 subunit prevents the assembly of whole mitochondrial complex I and leads to the formation of a low abundant 700 kDa subcomplex. Biochimica et Biophysica Acta 2008; 1777: 388–396
Cardol P., Figueroa F., Remacle C., et al. Oxidative phosphorylation: Building blocks and related components. In: Stern D.B. (ed) The Chlamydomonas sourcebook, organellar and metabolic processes. San Diego: Elsevier Inc., 2009, pp. 469–502
Cardol P., Gloire G., Havaux M., et al. Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiology 2003; 133: 2010–2020
Cardol P., González-Halphen D., Reyes-Prieto A., et al. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiology 2005; 137: 447–459
Cardol P., Lapaille M., Minet P., et al. ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. Eukaryotic Cell 2006; 5: 1460–1467
Cardol P., Matagne R.F., Remacle C. Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. Journal of Molecular Biology 2002; 319: 1211–1221
Cardol P., Remacle C. The mitochondrial genome. In: The Chlamydomonas sourcebook, organellar and metabolic processes. San Diego: Elsevier Inc., 2009, pp. 445–467
Cardol P., Vanrobaeys F., Devreese B., et al. Higher plant-like subunit composition of mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochimica et Biophysica Acta 2004; 1658: 212–224
Carrie C., Murcha M.W., Whelan J. An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biology 2010; 10: 249
Carroll J., Fearnley I.M., Shannon R.J., et al. Analysis of the subunit composition of complex I from bovine heart mitochondria. Molecular & Cellular Proteomics 2003; 2: 117–126
Carroll J., He J., Ding S., et al. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. Proceedings of the National Academy of Sciences of the United States of America 2021; 118: e2100558118
Chacinska A., Pfannschmidt S., Wiedemann N., et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. The EMBO Journal 2004; 23: 3735–3746
Claros M.G., Perea J., Shu Y., et al. Limitations to in vivo import of hydrophobic proteins into yeast mitochondria: The case of a cytoplasmically synthesized apocytochrome b. European Journal of Biochemistry 1995; 228: 762–771
Claros M.G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. European Journal of Biochemistry 1996; 241: 779–786
Cognat V., Deragon J.-M., Vinogradova E., et al. On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes. Genetics 2008; 179: 113–123
Cognat V., Pawlak G., Duchêne A.M., et al. PlantRNA, a database for tRNAs of photosynthetic eukaryotes. Nucleic Acids Research 2013; 41: 273–279
Colin F., Martelli A., Clémancey M., et al. Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. Journal of the American Chemical Society 2013; 135: 733–740
Colina-Tenorio L., Dautant A., Miranda-Astudillo H., et al. The peripheral stalk of rotary ATPases. Frontiers in Physiology 2018; 9: 1243
Colina-Tenorio L., Miranda-Astudillo H., Cano-Estrada A., et al. Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochimica et Biophysica Acta 2016; 1857: 359–369
Colleaux L., Michel-Wolwertz M.R., Matagne R.F., et al. The apocytochrome b gene of Chlamydomonas smithii contains a mobile intron related to both Saccharomyces and Neurospora introns. Molecular and General Genetics 1990; 223: 288–296
Couturier J., Touraine B., Briat J.-F., et al. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Frontiers in Plant Science 2013; 4: 259
Couturier J., Wu H.-C., Dhalleine T., et al. Monothiol glutaredoxin-BolA interactions: redox control of Arabidopsis thaliana BolA2 and SufE1. Molecular Plant 2014; 7: 187–205
Crofts A.R., Rose S.W., Burton R.L., et al. The Q-cycle mechanism of the bc1 complex: A biologist’s perspective on atomistic studies. The Journal of Physical Chemistry. B 2017; 121: 3701–3717
Curran S.P., Leuenberger D., Leverich E.P., et al. The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. The Journal of Biological Chemistry 2004; 279: 43744–43751
Daley D.O., Clifton R., Whelan J. Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America 2002; 99: 10510–10515
Dang Q.L., Phan D.H., Johnson A.N., et al. Analysis of human mutations in the supernumerary subunits of complex I. eLife 2020; 10: 1–35
Davies K.M., Blum T.B., Kühlbrandt W. Conserved in situ arrangement of complex I and III2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proceedings of the National Academy of Sciences of the United States of America 2018; 115: 3024–3029
Denovan-Wright E.M., Lee R.W. Evidence that the fragmented ribosomal RNAs of Chlamydomonas mitochondria are associated with ribosomes. FEBS Letters 1995; 370: 222–226
Desplats, C., Mus, F., & Cuiné, S., et al. (2009). Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. The Journal of Biological Chemistry, 284, 4148–4157
Dinant M., Baurain D., Coosemans N., et al. Characterization of two genes encoding the mitochondrial alternative oxidase in Chlamydomonas reinhardtii. Current Genetics 2001; 39: 101–108
Duby F., Cardol P., Matagne R.F., et al. Structure of the telomeric ends of mt DNA, transcriptional analysis and complex I assembly in the dum24 mitochondrial mutant of Chlamydomonas reinhardtii. Molecular Genetics and Genomics 2001; 266: 109–114
Duchêne A.-M., Pujol C., Maréchal-Drouard L. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Current Genetics 2009; 55: 1–18
Dudkina N.V., Heinemeyer J., Keegstra W., et al. Structure of dimeric ATP synthase from mitochondria: An angular association of monomers induces the strong curvature of the inner membrane. FEBS Letters 2005; 579: 5769–5772
Dudkina N.V., Oostergetel G.T., Lewejohann D., et al. Row-like organization of ATP synthase in intact mitochondria determined by cryo-electron tomography. Biochimica et Biophysica Acta 2010; 1797: 272–277
Durante L., Hübner W., Lauersen K.J., et al. Characterization of the GPR1/FUN34/YaaH protein family in the green microalga Chlamydomonas suggests their role as intracellular membrane acetate channels. Plant Direct 2019; 3: e00148
Ehara T., Osafune T., Hase E. Behavior of mitochondria in synchronized cells of Chlamydomonas reinhardtii (Chlorophyta). Journal of Cell Science 1995; 108 (Pt 2): 499–507
Eisenhut M., Roell M.-S., Weber A.P.M. Mechanistic understanding of photorespiration paves the way to a new green revolution. The New Phytologist 2019; 223: 1762–1769
Ellis T.P., Helfenbein K.G., Tzagoloff A., et al. Aep3p stabilizes the mitochondrial bicistronic mRNA encoding subunits 6 and 8 of the H+-translocating ATP synthase of Saccharomyces cerevisiae. The Journal of Biological Chemistry 2004; 279: 15728–15733
Elurbe D.M., Huynen M.A. The origin of the supernumerary subunits and assembly factors of complex I: A treasure trove of pathway evolution. Biochimica et Biophysica Acta 2016; 1857: 971–979
Emonds-Alt B., Coosemans N., Gerards T., et al. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5′-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. The Plant Journal 2017; 89: 141–154
Eubel H., Heinemeyer J., Sunderhaus S., et al. Respiratory chain supercomplexes in plant mitochondria. Plant Physiology and Biochemistry 2004; 42: 937–942
Eubel H., Jänsch L., Braun H.P. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiology 2003; 133: 274–286
Fatihi A., Latimer S., Schmollinger S., et al. A dedicated type II NADPH dehydrogenase performs the penultimate step in the biosynthesis of vitamin K1 in Synechocystis and Arabidopsis. The Plant Cell 2015; 27: 1730–1741
Ferry J.G. The gamma class of carbonic anhydrases. Biochimica et Biophysica Acta 2010; 1804: 374–381
Fiedorczuk K., Letts J.A., Degliesposti G., et al. Atomic structure of the entire mammalian mitochondrial complex I. Nature 2016; 538: 406–410
Figueroa-Martínez, F., Funes, S., & Franzén, L.G., et al. (2008). Reconstructing the mitochondrial protein import machinery of Chlamydomonas reinhardtii. Genetics, 179, 149–155
Finger Y., Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biological Chemistry 2020; 401: 749–763
Finnegan P.M., Ellis T.P., Nagley P., et al. The mature AEP2 gene product of Saccharomyces cerevisiae, required for the expression of subunit 9 of ATP synthase, is a 58 kDa mitochondrial protein. FEBS Letters 1995; 368: 505–508
Formosa L.E., Dibley M.G., Stroud D.A., et al. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Seminars in Cell & Developmental Biology 2018; 76: 154–162
Formosa L.E., Muellner-Wong L., Reljic B., et al. Dissecting the roles of mitochondrial complex I intermediate assembly complex factors in the biogenesis of complex I. Cell Rep 2020; 31: 107541
Formosa L.E., Reljic B., Sharpe A.J., et al. Optic atrophy–associated TMEM126A is an assembly factor for the ND4-module of mitochondrial complex I. Proceedings of the National Academy of Sciences of the United States of America 2021; 118: e2019665118
Franzén L.G., Falk G. Nucleotide sequence of cDNA clones encoding the β subunit of mitochondrial ATP synthase from the green alga Chlamydomonas reinhardtii: The precursor protein encoded by the cDNA contains both an N-terminal presequence and a C-terminal extension. Plant Molecular Biology 1992; 19: 771–780
Fromm S., Braun H.P., Peterhansel C. Mitochondrial gamma carbonic anhydrases are required for complex I assembly and plant reproductive development. The New Phytologist 2016b; 211: 194–207
Fromm S., Senkler J., Zabaleta E., et al. The carbonic anhydrase domain of plant mitochondrial complex I. Physiologia Plantarum 2016a; 157: 289–296
Fuchs P., Rugen N., Carrie C., et al. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. The Plant Journal 2020; 101: 420–441
Fukasawa Y., Tsuji J., Fu S.C., et al. MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites. Molecular and Cellular Proteomics 2015; 14: 1113–1126
Funes S., Davidson E., Gonzalo Claros M., et al. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. The Journal of Biological Chemistry 2002b; 277: 6051–6058
Funes S., Perez-Martínez X., Antaramian A., et al. Transfer of mitochondrial genes to the nucleus in chlamydomonad algae: Perspectives for the allotopic expression of OXPHOS proteins and future human therapies. In: García-Trejo J.J. (ed) Recent research developments in bioenergetics. Research Signpost, 2002a, pp. 173–194
Gabriel K., Milenkovic D., Chacinska A., et al. Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway. Journal of Molecular Biology 2007; 365: 612–620
Gallaher S.D., Fitz-Gibbon S.T., Strenkert D., et al. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. The Plant Journal 2018; 93: 545–565
García-Trejo J.J., Zarco-Zavala M., Mendoza-Hoffmann F., et al. The inhibitory mechanism of the ζ subunit of the F1FO-ATPase nanomotor of Paracoccus denitrificans and related α-proteobacteria. The Journal of Biological Chemistry 2016; 291: 538–546
Gawryluk R.M.R., Gray M.W. Evidence for an early evolutionary emergence of gamma-type carbonic anhydrases as components of mitochondrial respiratory complex I. BMC Evolutionary Biology 2010; 10: 176
Gelling C., Dawes I.W., Richhardt N., et al. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Molecular and Cellular Biology 2008; 28: 1851–1861
Gérin S., Mathy G., Blomme A., et al. Plasticity of the mitoproteome to nitrogen sources (nitrate and ammonium) in Chlamydomonas reinhardtii: The logic of Aox1 gene localization. Biochimica et Biophysica Acta 2010; 1797: 994–1003
Gervason S., Larkem D., Mansour A.B., et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nature Communications 2019; 10: 3566
Giachin G., Bouverot R., Acajjaoui S., et al. Dynamics of human mitochondrial complex I assembly: Implications for neurodegenerative diseases. Frontiers in Molecular Biosciences 2016; 3: 43
Glaser E., Dessi P. Integration of the mitochondrial-processing peptidase into the cytochrome bc1 complex in plants. Journal of Bioenergetics and Biomembranes 1999; 31: 259–274
Godman J., Balk J. Genome analysis of Chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins. Genetics 2008; 179: 59–68
Goyal A., Tolbert N.E. Variations in the alternative oxidase in Chlamydomonas grown in air or high CO2. Plant Physiology 1989; 89: 958–962
Grant D., Chiang K.S. Physical mapping and characterization of Chlamydomonas mitochondrial DNA molecules: Their unique ends, sequence homogeneity, and conservation. Plasmid 1980; 4: 82–96
Gray M.W., Boer P.H. Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 1988; 319: 135–147
Guerrero-Castillo S., Baertling F., Kownatzki D., et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metabolism 2017; 25: 128–139
Hahn A., Parey K., Bublitz M., et al. Structure of a complete ATP synthase dimer reveals the molecular basis of inner mitochondrial membrane morphology. Molecular Cell 2016; 63: 445–456
He H., Van Breusegem F., Mhamdi A. Redox-dependent control of nuclear transcription in plants. Journal of Experimental Botany 2018; 69: 3359–3372
Helfenbein K.G., Ellis T.P., Dieckmann C.L., et al. ATP22, a nuclear gene required for expression of the F0 sector of mitochondrial ATPase in Saccharomyces cerevisiae. The Journal of Biological Chemistry 2003; 278: 19751–19756
Hildebrandt T.M., Nunes Nesi A., Araújo W.L., et al. Amino acid catabolism in plants. Molecular Plant 2015; 8: 1563–1579
Hiramatsu T., Nakamura S., Misumi O., et al. Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. Journal of Phycology 2006; 42: 1048–1058
Hommersand M.H., Thimann K.V. Terminal respiration of vegetative cells and zygospores in Chlamydomonas reinhardi. Plant Physiology 1965; 40: 1220–1227
Horten P., Colina-Tenorio L., Rampelt H. Biogenesis of mitochondrial metabolite carriers. Biomolecules 2020; 10: 1–13
Huang S., Braun H.P., Gawryluk R.M.R., et al. Mitochondrial complex II of plants: Subunit composition, assembly, and function in respiration and signaling. The Plant Journal 2019; 98: 405–417
Huang S., Taylor N.L., Ströher E., et al. Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis. The Plant Journal 2013; 73: 429–441
Ivanova A., Gill-Hille M., Huang S., et al. A mitochondrial LYR protein is required for complex I assembly. Plant Physiology 2019; 181: 1632–1650
Jans, F., Mignolet, E., & Houyoux, P.-A., et al. (2008). A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proceedings of the National Academy of Sciences of the United States of America, 105, 20546–20551
Kampjut D., Sazanov L.A. The coupling mechanism of mammalian respiratory complex I. Science 2020; 370: eabc4209–eabc4209
Kaye Y., Huang W., Clowez S., et al. The mitochondrial alternative oxidase from Chlamydomonas reinhardtii enables survival in high light. The Journal of Biological Chemistry 2019; 294: 1380–1395
Kerscher O., Holder J., Srinivasan M., et al. The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. The Journal of Cell Biology 1997; 139: 1663–1675
Kerscher S., Dröse S., Zickermann V., et al. The three families of respiratory NADH dehydrogenases. Results and Problems in Cell Differentiation 2008; 45: 185–222
Klusch N., Senkler J., Yildiz Ö., et al. A ferredoxin bridge connects the two arms of plant mitochondrial complex I. The Plant Cell 2021; 33: 2072–2091
Koppen M., Langer T. Protein degradation within mitochondria: Versatile activities of AAA proteases and other peptidases. Critical Reviews in Biochemistry and Molecular Biology 2007; 42: 221–242
Kovalčíková J., Vrbacký M., Pecina P., et al. TMEM70 facilitates biogenesis of mammalian ATP synthase by promoting subunit c incorporation into the rotor structure of the enzyme. The FASEB Journal 2019; 33: 14103–14117
Kück U., Neuhaus H. Universal genetic code evidenced in mitochondria of Chlamydomonas reinhardii. Applied Microbiology and Biotechnology 1986; 23: 462–469
Lancelin J.M., Gans P., Bouchayer E., et al. NMR structures of a mitochondrial transit peptide from the green alga Chlamydomonas reinhardtii. FEBS Letters 1996; 391: 203–208
Lanz N.D., Booker S.J. Auxiliary iron-sulfur cofactors in radical SAM enzymes. Biochimica et Biophysica Acta 2015; 1853: 1316–1334
Lapaille M., Escobar-Ramirez A., Degand H., et al. Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Molecular Biology and Evolution 2010a; 27: 1630–1644
Lapaille M., Thiry M., Perez E., et al. Loss of mitochondrial ATP synthase subunit beta (Atp2) alters mitochondrial and chloroplastic function and morphology in Chlamydomonas. Biochimica et Biophysica Acta 2010b; 1797: 1533–1539
Larosa V., Coosemans N., Motte P., et al. Reconstruction of a human mitochondrial complex I mutation in the unicellular green alga Chlamydomonas. The Plant Journal 2012; 70: 759–768
Larosa V., Remacle C. Insights into the respiratory chain and oxidative stress. Bioscience Reports 2018; 38: BSR20171492
Lauersen K.J., Willamme R., Coosemans N., et al. Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Research 2016; 16: 266–274
Lecler R., Vigeolas H., Emonds-Alt B., et al. Characterization of an internal type-II NADH dehydrogenase from Chlamydomonas reinhardtii mitochondria. Current Genetics 2012; 58: 205–216
Lefebvre-Legendre L., Vaillier J., Benabdelhak H., et al. Identification of a nuclear gene (FMC1) required for the assembly/stability of yeast mitochondrial F(1)-ATPase in heat stress conditions. The Journal of Biological Chemistry 2001; 276: 6789–6796
Lemaire S.D., Miginiac-Maslow M. The thioredoxin superfamily in Chlamydomonas reinhardtii. Photosynthesis Research 2004; 82: 203–220
Levy S., Schuster G. Polyadenylation and degradation of RNA in the mitochondria. Biochemical Society Transactions 2016; 44: 1475–1482
Ligas J., Pineau E., Bock R., et al. The assembly pathway of complex I in Arabidopsis thaliana. The Plant Journal 2019; 97: 447–459
Lill R. Function and biogenesis of iron-sulphur proteins. Nature 2009; 460: 831–838
Lill R., Freibert S.-A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annual Review of Biochemistry 2020; 89: 471–499
Lino R., Hasegawa R., Tabata K.V., et al. Mechanism of inhibition by C-terminal alpha-helices of the epsilon subunit of Escherichia coli FoF1-ATP synthase. The Journal of Biological Chemistry 2009; 284: 17457–17464
Lobo-Jarne T., Ugalde C. Respiratory chain supercomplexes: Structures, function and biogenesis. Seminars in Cell & Developmental Biology 2018; 76: 179–190
Lown F.J., Watson T., Purton S. Chlamydomonas nuclear mutants that fail to assemble respiratory or photosynthetic electron transfer complexes. Biochemical Society Transactions 2001; 29: 452–455
Lu H., Allen S., Wardleworth L., et al. Functional TIM10 chaperone assembly is redox-regulated in vivo. The Journal of Biological Chemistry 2004; 279: 18952–1895810
Lytovchenko O., Naumenko N., Oeljeklaus S., et al. The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase. The EMBO Journal 2014; 33: 1624–1638
Ma D.P., King Y.T., Kim Y., et al. Amplification and characterization of an inverted repeat from the Chlamydomonas reinhardtii mitochondrial genome. Gene 1992; 119: 253–257
Maio N., Kim K.S., Singh A., et al. A single adaptable cochaperone-scaffold complex delivers nascent iron-sulfur clusters to mammalian respiratory chain complexes I-III. Cell Metabolism 2017; 25: 945–953.e6
Maio N., Singh A., Uhrigshardt H., et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metabolism 2014; 19: 445–457
Maldonado M., Padavannil A., Zhou L., et al. Atomic structure of a mitochondrial complex I intermediate from vascular plants. eLife 2020; 9: e56664
Mansilla N., Racca S., Gras D.E., et al. The complexity of mitochondrial complex iv: An update of cytochrome c oxidase biogenesis in plants. International Journal of Molecular Sciences 2018; 19: 662
Martin G., Keller W. RNA-specific ribonucleotidyl transferases. RNA 2007; 13: 1834–1849
Massoz S., Hanikenne M., Bailleul B., et al. In vivo chlorophyll fluorescence screening allows the isolation of a Chlamydomonas mutant defective for NDUFAF3, an assembly factor involved in mitochondrial complex I assembly. The Plant Journal 2017; 92: 584–595
Massoz S., Larosa V., Horrion B., et al. Isolation of Chlamydomonas reinhardtii mutants with altered mitochondrial respiration by chlorophyll fluorescence measurement. Journal of Biotechnology 2015; 215: 27–34
Massoz S., Larosa V., Plancke C., et al. Inactivation of genes coding for mitochondrial Nd7 and Nd9 complex I subunits in Chlamydomonas reinhardtii. Impact of complex I loss on respiration and energetic metabolism. Mitochondrion 2014; 19: 365–374
Matagne R.F., Michel-Wolwertz M.R., Munaut C., et al. Induction and characterization of mitochondrial DNA mutants in Chlamydomonas reinhardtii. The Journal of Cell Biology 1989; 108: 1221–1226
Matouschek A., Pfanner N., Voos W. Protein unfolding by mitochondria: The Hsp70 import motor. EMBO Reports 2000; 1: 404–410
Matus-Ortega M.G., Salmerón-Santiago K.G., Flores-Herrera O., et al. The alternative NADH dehydrogenase is present in mitochondria of some animal taxa. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics 2011; 6: 256–263
Maxwell D.P., Wang Y., McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proceedings of the National Academy of Sciences of the United States of America 1999; 96: 8271–8276
Meier S., Neupert W., Herrmann J.M. Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. The Journal of Biological Chemistry 2005; 280: 7777–7785
Mendel R.R. The molybdenum cofactor. The Journal of Biological Chemistry 2013; 288: 13165–13172
Merchant S.S., Prochnik S.E., Vallon O., et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007; 318: 245–251
Meyer E.H., Welchen E., Carrie C. Assembly of the complexes of the oxidative phosphorylation system in land plant mitochondria. Annual Review of Plant Biology 2019; 70: 23–50
Michaelis G., Vahrenholz C., Pratje E. Mitochondrial DNA of Chlamydomonas reinhardtii: The gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Molecular & General Genetics: MGG 1990; 223: 211–216
Millar A.H., Eubel H., Jänsch L., et al. Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Molecular Biology 2004; 56: 77–90
Millar A.H., Mittova V., Kiddle G., et al. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiology 2003; 133: 443–447
Miller H.K., Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics 2015; 7: 943–956
Miranda-Astudillo H., Cano-Estrada A., Vázquez-Acevedo M., et al. Interactions of subunits Asa2, Asa4 and Asa7 in the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp. Biochimica et Biophysica Acta 2014; 1837: 1–13
Molen T.A., Rosso D., Piercy S., et al. Characterization of the alternative oxidase of Chlamydomonas reinhardtii in response to oxidative stress and a shift in nitrogen source. Physiologia Plantarum 2006; 127: 74–86
Monné M., Daddabbo L., Gagneul D., et al. Uncoupling proteins 1 and 2 (UCP1 and UCP2) fromArabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. The Journal of Biological Chemistry 2018; 293: 4213–4227
Moosavi B., Berry E.A., Zhu X.L., et al. The assembly of succinate dehydrogenase: A key enzyme in bioenergetics. Cellular and Molecular Life Sciences: CMLS 2019; 76: 4023–4042
Morales-Rios E., Montgomery M.G., Leslie A.G.W., et al. Structure of ATP synthase from Paracoccus denitrificans determined by X-ray crystallography at 4.0 Å resolution. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: 13231–13236
Moseler A., Aller I., Wagner S., et al. The mitochondrial monothiol glutaredoxin S15 is essential for iron-sulfur protein maturation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: 13735–13740
Mühleip A., Kock Flygaard R., Ovciarikova J., et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nature Communications 2021; 12: 120
Mühleip A., McComas S.E., Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8: e51179
Murcha M.W., Elhafez D., Millar A.H., et al. The C-terminal region of TIM17 links the outer and inner mitochondrial membranes in Arabidopsis and is essential for protein import. The Journal of Biological Chemistry 2005; 280: 16476–16483
Murphy B.J., Klusch N., Langer J., et al. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-Fo coupling. Science 2019; 364: eaaw9128
Nasta V., Suraci D., Gourdoupis S., et al. A pathway for assembling [4Fe-4S]2+ clusters in mitochondrial iron-sulfur protein biogenesis. The FEBS Journal 2020; 287: 2312–2327
Ndi M., Marin-Buera L., Salvatori R., et al. Biogenesis of the bc1 complex of the mitochondrial respiratory chain. Journal of Molecular Biology 2018; 430: 3892–3905
Nedelcu A.M. Fragmented and scrambled mitochondrial ribosomal RNA coding regions among green algae: A model for their origin and evolution. Molecular Biology and Evolution 1997; 14: 506–517
Neupert W. Protein import into mitochondria. Annual Review of Biochemistry 1997; 66: 863–917
Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annual Review of Biochemistry 2007; 76: 723–749
Ng S., De Clercq I., Van Aken O., et al. Anterograde and retrograde regulation of nuclear genes encoding mitochondrial proteins during growth, development, and stress. Molecular Plant 2014; 7: 1075–1093
Nishimura Y., Higashiyama T., Suzuki L., et al. The biparental transmission of the mitochondrial genome in Chlamydomonas reinhardtii visualized in living cells. European Journal of Cell Biology 1998; 77: 124–133
Nurani G., Franzén L.G. Isolation and characterization of the mitochondrial ATP synthase from Chlamydomonas reinhardtii. cDNA sequence and deduced protein sequence of the alpha subunit. Plant Molecular Biology 1996; 31: 1105–1116
Ojala D., Merkel C., Gelfand R., et al. The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 1980; 22: 393–403
Oster G., Wang H. Rotary protein motors. Trends in Cell Biology 2003; 13: 114–121
Ostroukhova M., Zalutskaya Z., Ermilova E. New insights into AOX2 transcriptional regulation in Chlamydomonas reinhardtii. European Journal of Protistology 2017; 58: 1–8
Oyedotun K.S., Sit C.S., Lemire B.D. The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction. Biochimica et Biophysica Acta 2007; 1767: 1436–1445
Palmieri L., Picault N., Arrigoni R., et al. Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: Organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. The Biochemical Journal 2008; 410: 621–629
Parey K., Brandt U., Xie H., et al. Cryo-EM structure of respiratory complex I at work. eLife 2018; 7: e39213
Parey K., Haapanen O., Sharma V., et al. High-resolution cryo-EM structures of respiratory complex I: Mechanism, assembly, and disease. Science Advances 2019; 5: eaax9484
Paul V.D., Lill R. Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochimica et Biophysica Acta 2015; 1853: 1528–1539
Paumard P., Vaillier J., Coulary B., et al. The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO Journal 2002; 21: 221–230
Payne M.J., Schweizer E., Lukins H.B. Properties of two nuclear pet mutants affecting expression of the mitochondrial oli1 gene of Saccharomyces cerevisiae. Current Genetics 1991; 19: 343–351
Perez-Martínez X., Antaramian A., Vazquez-Acevedo M., et al. Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. The Journal of Biological Chemistry 2001; 276: 11302–11309
Perez-Martinez X., Funes S., Tolkunova E., et al. Structure of nuclear-localized cox3 genes in Chlamydomonas reinhardtii and in its colorless close relative Polytomella sp. Current Genetics 2002; 40: 399–404
Perez-Martínez X., Vázquez-Acevedo M., Tolkunova E., et al. Unusual location of a mitochondrial gene. Subunit III of cytochrome c oxidase is encoded in the nucleus of Chlamydomonad algae. The Journal of Biological Chemistry 2000; 275: 30144–30152
Peters K., Belt K., Braun H.P. 3D Gel map of Arabidopsis complex I. Frontiers in Plant Science 2013; 4: 153
Petrakis N., Alcock F., Tokatlidis K. Mitochondrial ATP-independent chaperones. IUBMB Life 2009; 61: 909–914
Piller L., Besagni C., Ksas B., et al. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 14354–14359
Pineau B., Layoune O., Danon A., et al. L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. The Journal of Biological Chemistry 2008; 283: 32500–32505
Plancke C., Vigeolas H., Höhner R., et al. Lack of isocitrate lyase in Chlamydomonas leads to changes in carbon metabolism and in the response to oxidative stress under mixotrophic growth. The Plant Journal 2014; 77: 404–417
Przybyla-Toscano J., Boussardon C., Law S.R., et al. Gene atlas of iron-containing proteins in Arabidopsis thaliana. The Plant Journal 2021b; 106: 258–274
Przybyla-Toscano J., Christ L., Keech O., et al. Iron-sulfur proteins in plant mitochondria: roles and maturation. Journal of Experimental Botany 2021a; 72: 2014–2044
Przybyla-Toscano J., Roland M., Gaymard F., et al. Roles and maturation of iron-sulfur proteins in plastids. Journal of Biological Inorganic Chemistry: JBIC: a Publication of the Society of Biological Inorganic Chemistry 2018; 23: 545–566
Ramage L., Junne T., Hahne K., et al. Functional cooperation of mitochondrial protein import receptors in yeast. The EMBO Journal 1993; 12: 4115–4123
Rébeillé F., Alban C., Bourguignon J., et al. The role of plant mitochondria in the biosynthesis of coenzymes. Photosynthesis Research 2007; 92: 149–162
Remacle C., Baurain D., Cardol P., et al. Mutants of Chlamydomonas reinhardtii deficient in mitochondrial complex I: Characterization of two mutations affecting the nd1 coding sequence. Genetics 2001; 158: 1051–1060
Remacle C., Cardol P., Coosemans N., et al. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 4771–4776
Remacle C., Coosemans N., Jans F., et al. Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii. Plant Molecular Biology 2010; 74: 223–233
Rhein V.F., Carroll J., Ding S., et al. NDUFAF5 hydroxylates NDUFS7 at an early stage in the assembly of human complex I. The Journal of Biological Chemistry 2016; 291: 14851–14860
Rodríguez-Salinas E., Remacle C., González-Halphen D. Green Algae Genomics. A Mitochondrial Perspective. Epub ahead of print 2012. DOI: 10.1016/B978-0-12-394279-1.00008-9
Ruprecht J.J., Kunji E.R.S. The SLC25 mitochondrial carrier family: Structure and mechanism. Trends in Biochemical Sciences 2020; 45: 244–258
Ryan R., Grant D., Chiang K.S., et al. Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences of the United States of America 1978; 75: 3268–3272
Saada A., Vogel R.O., Hoefs S.J., et al. Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. American Journal of Human Genetics 2009; 84: 718–727
Salinas T., Duby F., Larosa V., et al. Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga Chlamydomonas. PLoS Genetics 2012; 8: e1002946
Salinas T., Larosa V., Cardol P., et al. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: A review. Biochimie 2014; 100: 207–218
Salinas-Giegé T., Cavaiuolo M., Cognat V., et al. Polycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii. Nucleic Acids Research 2017; 45: 12963–12973
Sánchez-Caballero L., Elurbe D.M., Baertling F., et al. TMEM70 functions in the assembly of complexes I and V. Biochimica et Biophysica Acta 2020; 1861: 148202
Sánchez-Vásquez L., Vázquez-Acevedo M., de la Mora J., et al. Near-neighbor interactions of the membrane-embedded subunits of the mitochondrial ATP synthase of a chlorophycean alga. Biochimica et Biophysica Acta 2017; 1858: 497–509
Schaedler T.A., Thornton J.D., Kruse I., et al. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. The Journal of Biological Chemistry 2014; 289: 23264–23274
Schägger H., Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. The EMBO Journal 2000; 19: 1777–1783
Schertl P., Sunderhaus S., Klodmann J., et al. L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. The Journal of Biological Chemistry 2012; 287: 14412–14419
Schikowsky C., Senkler J., Braun H.P. SDH6 and SDH7 contribute to anchoring succinate dehydrogenase to the inner mitochondrial membrane in Arabidopsis thaliana. Plant Physiology 2017; 173: 1094–1108
Schimmeyer J., Bock R., Meyer E.H. l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Molecular Biology 2016; 90: 117–126
Schimo S., Wittig I., Pos K.M., et al. Cytochrome c oxidase biogenesis and metallochaperone interactions: Steps in the assembly pathway of a bacterial complex. PLoS One 2017; 12: e0170037
Schönfeld C., Wobbe L., Borgstädt R., et al. The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. The Journal of Biological Chemistry 2004; 279: 50366–50374
Schuller J.M., Saura P., Thiemann J., et al. Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I. Nature Communications 2020; 11: 494
Senkler J., Senkler M., Braun H.P. Structure and function of complex I in animals and plants - a comparative view. Physiologia Plantarum 2017a; 161: 6–15
Senkler J., Senkler M., Eubel H., et al. The mitochondrial complexome of Arabidopsis thaliana. The Plant Journal 2017b; 89: 1079–1092
Sheftel A.D., Stehling O., Pierik A.J., et al. Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Molecular and Cellular Biology 2009; 29: 6059–6073
Sheftel A.D., Wilbrecht C., Stehling O., et al. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Molecular Biology of the Cell 2012; 23: 1157–1166
Sluse F.E., Jarmuszkiewicz W., Navet R., et al. Mitochondrial UCPs: New insights into regulation and impact. Biochimica et Biophysica Acta 2006; 1757: 480–485
Smith D.R., Craig R.J. Does mitochondrial DNA replication in Chlamydomonas require a reverse transcriptase? The New Phytologist 2021; 229: 1192–1195
Soto I.C., Barrientos A. Mitochondrial cytochrome c oxidase biogenesis is regulated by the redox state of a heme-binding translational activator. Antioxidants & Redox Signaling 2016; 24: 281–298
Soto I.C., Fontanesi F., Liu J., et al. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochimica et Biophysica Acta 2012; 1817: 883–897
Soufari H., Parrot C., Kuhn L., et al. Specific features and assembly of the plant mitochondrial complex I revealed by cryo-EM. Nature Communications 2020; 11: 5195
Spikes T.E., Montgomery M.G., Walker J.E. Structure of the dimeric ATP synthase from bovine mitochondria. Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 23519–23526
Srinivasan V., Pierik A.J., Lill R. Crystal structures of nucleotide-free and glutathione-bound mitochondrial ABC transporter Atm1. Science 2014; 343: 1137–1140
Stewart A.G., Lee L.K., Donohoe M., et al. The dynamic stator stalk of rotary ATPases. Nature Communications 2012; 3: 687
Strand D.D., D’Andrea L., Bock R. The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. The Biochemical Journal 2019; 476: 2743–2756
Stroud D.A., Surgenor E.E., Formosa L.E., et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 2016; 538: 123–126
Subrahmanian N., Castonguay A.D., Remacle C., et al. Assembly of mitochondrial complex I requires the low-complexity protein AMC1 in Chlamydomonas reinhardtii. Genetics 2020; 214: 895–911
Subrahmanian N., Remacle C., Hamel P.P. Plant mitochondrial complex I composition and assembly: A review. Biochimica et Biophysica Acta 2016; 1857: 1001–1014
Sun F., Huo X., Zhai Y., et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 2005; 121: 1043–1057
Sunderhaus S., Dudkina N.V., Jansch L., et al. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. The Journal of Biological Chemistry 2006; 281: 6482–6488
Suzuki T., Tanaka K., Wakabayashi C., et al. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nature Chemical Biology 2014; 10: 930–936
Sweetman C., Waterman C.D., Rainbird B.M., et al. AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiology 2019; 181: 774–788
Szyrach G., Ott M., Bonnefoy N., et al. Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. The EMBO Journal 2003; 22: 6448–6457
Takeda H., Tsutsumi A., Nishizawa T., et al. Mitochondrial sorting and assembly machinery operates by β-barrel switching. Nature 2021; 12: 1–7
Tardif M., Atteia A., Specht M., et al. Predalgo: A new subcellular localization prediction tool dedicated to green algae. Molecular Biology and Evolution 2012; 29: 3625–3639
Terashima M., Specht M., Naumann B., et al. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Molecular & Cellular Proteomics 2010; 9: 1514–1532
Thompson K., Mai N., Oláhová M., et al. OXA 1L mutations cause mitochondrial encephalopathy and a combined oxidative phosphorylation defect. EMBO Molecular Medicine 2018; 10: e9060
Timón-Gómez A., Nývltová E., Abriata L.A., et al. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Seminars in Cell & Developmental Biology 2018; 76: 163–178
Truscott K.N., Kovermann P., Geissler A., et al. A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase formed by Tim23. Nature Structural & Molecular Biology 2001; 8: 1074–1082
Tzagoloff A., Barrientos A., Neupert W., et al. Atp10p assists assembly of Atp6p into the F0 unit of the yeast mitochondrial ATPase. The Journal of Biological Chemistry 2004; 279: 19775–19780
Uzarska M.A., Dutkiewicz R., Freibert S.-A., et al. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Molecular Biology of the Cell 2013; 24: 1830–1841
Vahrenholz C., Riemen G., Pratje E., et al. Mitochondrial DNA of Chlamydomonas reinhardtii: The structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Current Genetics 1993; 24: 241–247
van Lis R., Atteia A., Mendoza-Hernández G., et al. Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiology 2003; 132: 318–330
van Lis R., Brugière S., Baffert C., et al. Hybrid cluster proteins in a photosynthetic microalga. The FEBS Journal 2020; 287: 721–735
Van Lis R., Mendoza-Hernández G., Groth G., et al. New insights into the unique structure of the F0F 1-ATP synthase from the chlamydomonad algae Polytomella sp. and Chlamydomonas reinhardtii. Plant Physiology 2007; 144: 1190–1199
van Raaij M.J., Orriss G.L., Montgomery M.G., et al. The ATPase inhibitor protein from bovine heart mitochondria: The minimal inhibitory sequence. Biochemistry 1996; 35: 15618–15625
Vazquez-Acevedo M., Cardol P., Cano-Estrada A., et al. The mitochondrial ATP synthase of chlorophycean algae contains eight subunits of unknown origin involved in the formation of an atypical stator-stalk and in the dimerization of the complex. Journal of Bioenergetics and Biomembranes 2006; 38: 271–282
Vázquez-Acevedo M., Vega-deLuna F., Sánchez-Vásquez L., et al. Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae. Biochimica et Biophysica Acta 2016; 1857: 1183–1190
Villavicencio-Queijeiro A., Pardo J.P., González-Halphen D. Kinetic and hysteretic behavior of ATP hydrolysis of the highly stable dimeric ATP synthase of Polytomella sp. Archives of Biochemistry and Biophysics 2015; 575: 30–37
Vinogradova E., Salinas T., Cognat V., et al. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nucleic Acids Research 2009; 37: 1521–1528
Vinothkumar K.R., Zhu J., Hirst J. Architecture of mammalian respiratory complex I. Nature 2014; 515: 80–84
Vögtle F.N., Wortelkamp S., Zahedi R.P., et al. Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 2009; 139: 428–439
von Heijne G., Stepphuhn J., Herrmann R.G. Domain structure of mitochondrial and chloroplast targeting peptides. European Journal of Biochemistry 1989; 180: 535–545
Vozza A., Parisi G., De Leonardis F., et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proceedings of the National Academy of Sciences of the United States of America 2014; 111: 960–965
Wächter A., Bi Y., Dunn S.D., et al. Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalk. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 3924–3929
Walker J.E., Dickson V.K. The peripheral stalk of the mitochondrial ATP synthase. Biochimica et Biophysica Acta 2006; 1757: 286–296
Waller J.C., Ellens K.W., Alvarez S., et al. Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron-sulphur cluster metabolism. Journal of Experimental Botany 2012; 63: 403–411
Waltz F., Giegé P. Striking diversity of mitochondria-specific translation processes across eukaryotes. Trends in Biochemical Sciences 2020; 45: 149–162
Waltz F., Salinas-Giegé T., Englmeier R., et al. How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications 2021; 12: 7176
Wang Z.G., White P.S., Ackerman S.H. Atp11p and Atp12p are assembly factors for the F(1)-ATPase in human mitochondria. The Journal of Biological Chemistry 2001; 276: 30773–30778
Waterhouse A., Bertoni M., Bienert S., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research 2018; 46: W296–W303
Weger H.G., Guy R.D., Turpin D.H. Cytochrome and alternative pathway respiration in green algae: measurements using inhibitors and o(2) discrimination. Plant Physiology 1990; 93: 356–360
Weiler B.D., Brück M.-C., Kothe I., et al. Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proceedings of the National Academy of Sciences of the United States of America 2020; 117: 20555–20565
Willmund F., Dorn K.V., Schulz-Raffelt M., et al. The chloroplast DnaJ homolog CDJ1 of Chlamydomonas reinhardtii is part of a multichaperone complex containing HSP70B, CGE1, and HSP90C. Plant Physiology 2008; 148: 2070–2082
Wobbe L., Nixon P.J. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Research 2013; 41: 6553–6567
Wydro M.M., Sharma P., Foster J.M., et al. The evolutionarily conserved iron-sulfur protein INDH is required for complex I assembly and mitochondrial translation in Arabidopsis [corrected]. The Plant Cell 2013; 25: 4014–4027
Yadav K.N.S., Miranda-Astudillo H.V., Colina-Tenorio L., et al. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis. Biochimica et Biophysica Acta 2017; 1858: 267–275
Yankovskaya V., Horsefield R., Törnroth S., et al. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003; 299: 700–704
Zalutskaya Z., Filina V., Ostroukhova M., et al. Regulation of alternative oxidase 1 in Chlamydomonas reinhardtii during sulfur starvation. European Journal of Protistology 2018; 63: 26–33
Zalutskaya Z., Lapina T., Ermilova E. The Chlamydomonas reinhardtii alternative oxidase 1 is regulated by heat stress. Plant Physiology and Biochemistry 2015; 97: 229–234
Zalutskaya Z., Ostroukhova M., Filina V., et al. Nitric oxide upregulates expression of alternative oxidase 1 in Chlamydomonas reinhardtii. Journal of Plant Physiology 2017; 219: 123–127
Zeng X., Neupert W., Tzagoloff A. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Molecular Biology of the Cell 2007; 18: 617–626
Zhu J., Vinothkumar K.R., Hirst J. Structure of mammalian respiratory complex I. Nature 2016; 536: 354–358
Zickermann V., Wirth C., Nasiri H., et al. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 5: 4–10
Zíková A., Schnaufer A., Dalley R.A., et al. The F0F1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei. PLoS Pathogens 2009; 5: e1000436
Zimmer S.L., Fei Z., Stern D.B. Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 2008; 179: 125–136
Zimmer S.L., Schein A., Zipor G., et al. Polyadenylation in Arabidopsis and Chlamydomonas organelles: The input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. The Plant Journal 2009; 59: 88–99
Mimaki M., Wang X., McKenzie M., et al. Understanding mitochondrial complex I assembly in health and disease. Biochimica et Biophysica Acta 2012; 1817: 851–862
Vogel R.O., Smeitink J.A.M., Nijtmans L.G.J. Human mitochondrial complex I assembly: A dynamic and versatile process. Biochimica et Biophysica Acta 2007; 1767: 1215–1227
Zhu J., King M.S., Yu M., et al. Structure of subcomplex Ibeta of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proceedings of the National Academy of Sciences of the United States of America 2015; 112: 12087–12092