Etching; HF; Cladding; Optical Fiber; Surface Treatment; Chemical Attack
Abstract :
[en] An optimized chemical method is developed for etching the cladding of an optical fiber without degrading its core. The goal is to obtain a smooth core surface that will be used further for sensor development. This technique consists of attacking the cladding with a buffer solution made of fluorinated salts. Three different concentrations in the buffer are used: 20%, 40%, and 60%. The bare core could then be used for sensing application thanks to interaction with the light signal. By following the evolution of the fiber diameter with the etching time, two different kinetics are observed for each concentration. These two parts of the curve correspond to the attack of the cladding and the core, and the transition point allows to find the time when the cladding is removed. With increased buffer concentration, this etching time is decreased. Concerning the evolution of a light signal transmitted throughout the fiber during the attack, three zones are observed on the transmitted signal: (i) a small linear decrease at the beginning of the attack (degradation of the cladding), (ii) a high drop in transmission (cladding is removed), and (iii) again a small linear decrease of the transmission (progressive degradation of the core). The more the buffer concentration is high, the higher is the transmitted signal loss. Finally, an optimized chemical condition is determined to obtain a good compromise between the time of etching and the resulting signal loss in transmission while limiting the chemical risks associated to the use of fluorinated salts.
Disciplines :
Chemical engineering Materials science & engineering
Author, co-author :
Meunier, Dorian ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT) ; Centre de Recherches des Instituts Groupés de HELMo (CRIG), Haute Ecole Libre Mosanne (HELMo), Liège, Belgium
Schruyers, Jérôme ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces ; B-SεNS, Mons, Belgium
Gonzales Palla, Rachel; Centre de Recherches des Instituts Groupés de HELMo (CRIG), Haute Ecole Libre Mosanne (HELMo), Liège, Belgium
Mendoza, Carlos; Centre de Recherches des Instituts Groupés de HELMo (CRIG), Haute Ecole Libre Mosanne (HELMo), Liège, Belgium
Calberg, Cédric ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering
Pirard, Sophie ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces ; Centre de Recherches des Instituts Groupés de HELMo (CRIG), Haute Ecole Libre Mosanne (HELMo), Liège, Belgium
Mahy, Julien ; Université de Liège - ULiège > Chemical engineering ; Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique (INRS), Université du Québec, Québec, Canada
Language :
English
Title :
Controlled-chemical etching of the cladding in optical fibers for the design of analytical sensors
Rickelt, L.F., Ottosen, L.D.M., Kühl, M., Etching of multimode optical glass fibers: A new method for shaping the measuring tip and immobilization of indicator dyes in recessed fiber-optic microprobes. Sens Actuators B Chem. 211 (2015), 462–468, 10.1016/j.snb.2015.01.091.
Younus, M.H., Ameen, O.F., Redzuan, N., Ahmad, N., Raja Ibrahim, R.K., Fabrication and characterization of multimode optical fiber sensor for chemical temperature monitoring using optical time domain reflectometer, Karbala International Journal of Modern. Science. 4 (2018), 119–125, 10.1016/j.kijoms.2017.12.002.
Shao, Y., Xu, S., Zheng, X., Wang, Y., Xu, W., Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer. Sensors. 10 (2010), 3585–3596, 10.3390/s100403585.
Bal, H.K., Brodzeli, Z., Dragomir, N.M., Collins, S.F., Sidiroglou, F., Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification. Appl Opt. 51 (2012), 2282–2287.
Samavati, Z., Samavati, A., Ismail, A.F., Yahya, N., Rahman, M.A., Othman, M.H.D., Effect of acetone/methanol ratio as a hybrid solvent on fabrication of polymethylmethacrylate optical fiber sensor. Opt Laser Technol., 123, 2020, 105896.
Patiño-Jurado, B., Cardona-Maya, Y., Jaramillo-Grajales, M., Montagut-Ferizzola, Y.J., Botero-Cadavid, J.F., A label-free biosensor based on E-SMS optical fiber structure for anti BSA detection. Optical Fiber Technology., 74, 2022, 103116.
Guenot, P., Material Aspects of Standard Transmission Optical Fibers Different Types of Fibers. MRS Bull. 28:5 (2003), 360–364.
Degiorgio, V., Cristiani, I., Encyclopedia of Condensed Matter Physics, 2005, Elsevier, 152–158.
Chauhan, M., Singh, V.K., Tapered MMF sensor fabrication using SnO2-NPs for alcohol sensing application. Optical Fiber Technology., 75, 2023, 103167.
Arif Riza, M., Go, Y.I., Maier, R.R.J., Harun, S.W., Ahmad Anas, S.B., Enhanced fiber mounting and etching technique for optimized optical power transmission at critical cladding thickness for fiber-sensing application. Laser Phys., 31(12), 2021, 126201.
Zhong, N., Liao, Q., Zhu, X., Wang, Y., Chen, R., High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation. Appl Opt. 52 (2013), 1432–1440.
Zhong, N., Zhu, X., Liao, Q., Wang, Y., Chen, R., Sun, Y., Effects of surface roughness on optical properties and sensitivity of fiber-optic evanescent wave sensors. Appl Opt. 52 (2013), 3937–3945, 10.1364/AO.52.003937.
Riza, M.A., Go, Y.I., Maier, R.R.J., Dynamics rate of fiber chemical etching: New partial removal of cladding technique for humidity sensing application. Laser Phys., 30(12), 2020, 126205.
Zaca-Morán, P., Cuvas-Limón, J.M., Padilla-Martínez, J.P., Amaxal-Cuatetl, C., Gómez-Pavón, L.C., Zaca-Morán, R., Ortega-Mendoza, J.G., Experimental study of saturable and reverse saturable absorption of Zn nanoparticles photodeposited onto etched optical fibers. Opt Commun., 530, 2023, 129032.
Ding, H.W., Shi, J.D., Lim, T.W., Tan, Y.C., Lai, W.J., Economical Solution for Cladding Etched Optical Fibers. In: 2019 18th International Conference on Optical Communications and Networks (ICOCN), 2019, 8934123.
R.M. Chyad, M. Zubir Mat Jafri, K. ulazizi Ibrahim, Fabrication nano fiber optic by chemical etching for sensing application The 5 th International Scientific Conference for Fabrication nano fiber optic by chemical Etching for sensing application 995, Nanotechnology and Advanced Materials and Their Applications ICNAMA. 3 (2015) 3.
A. Witvrouw, B. du Bojsab, D. Moora, A. Verbista, C. van Hoof’, H. Bendera, K. Baerta, A comparison between wet HF etching and vapor HF etching for sacrificial oxide removal, Micromachining and Microfabrication Process Technology VI. 4174 (2000) 130–141. http://proceedings.spiedigitallibrary.org/.
Judge, J.S., A Study of the Dissolution of SiO in Acidic Fluoride Solutions. J Electrochem Soc. 118 (1971), 1772–1775.
Todoroji, S., Sakaguchi, S., Effect of F-Doping on Optical and Thermal Properties of Soda Magnesium Silicate Glasses for Utralow-Loss Fibers. Jpn J Appl Phys. 35 (1996), 5374–5378.
Kikuyama, H., Waki, M., Miyashita, M., Yabune, T., Miki, N., A Study of the Dissociation State and the SiO2 Etching Reaction for HF Solutions of Extremely Low Concentration. J Electrochem Soc. 141 (1994), 366–374.
Pisano, A., Physics for Anesthesiologists and Intensivists From Daily Life to Clinical Practice. Second Edition, 2021, Second edition, Springer Nature.
Keirsse, J., Boussard-Plédel, C., Loréal, O., Sire, O., Bureau, B., Leroyer, P., Turlin, B., Lucas, J., IR optical fiber sensor for biomedical applications, in. Vib Spectrosc, Elsevier, 2003, 23–32, 10.1016/S0924-2031(03)00044-4.