Coated Conductors; High-temperature superconductors (HTS); Magnetic shielding; Magnetic measurement; Finite-element modelling
Abstract :
[en] In this work we demonstrate the magnetic shielding ability of a stack of YBa2Cu3O7 (YBCO) tape annuli. The annuli are cut from a 46 mm wide second generation coated conductor deposited on a Ni-5at.%W alloy ferromagnetic substrate. The inner bore of the stacked tapes is 26 mm and the outer diameter is 45 mm. Three samples with different height (24 mm, 14.9 mm, 9.9 mm) are studied. All the experiments are carried out at both room temperature and liquid nitrogen temperature (77 K). The shielding efficiency is investigated when the magnetic field is applied either parallel to the axis of the stack (axial shielding) or perpendicular to it (transverse shielding). Under an axial field, magnetic shielding is found to be effective (SF > 3) up to magnetic flux densities of 0.67 T. The presence of the ferromagnetic substrates is found to have two important consequences. First, the stack of annuli is able to shield transverse flux densities in spite of its layered structure. Second, a finite magnetic shielding effectiveness is demonstrated at room temperature. In order to understand the contribution of the ferromagnetic substrates to the shielding mechanism, we use the experimental field dependence of the magnetic permeability as determined independently from hysteresis loop measurements on the same substrates. A finite-element homogenized model solved with an H-Φ formulation is shown to successfully reproduce the shielding factor of the stack at room temperature and 77 K, both under axial and transverse applied fields. These models are also used to assess the influence of the critical current density and the magnetic permeability on the shielding efficiency. Finally, the results are used to predict the magnetic shielding properties of higher stacks, demonstrating their significant potential to shield axial fields of ∼ 0.93 T (with SF > 10) at 77 K.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Brialmont, Sébastien ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Dular, Julien ; Université de Liège - ULiège > Montefiore Institute of Electrical Engineering and Computer Science
Wera, Laurent; ULiège - University of Liège [BE] > Department of Electrical Engineering and Computer Science
Fagnard, Jean-François ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Vanderheyden, Benoît ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Electronique et microsystèmes
Geuzaine, Christophe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Applied and Computational Electromagnetics (ACE)
Hahn, Seungyong ; Seoul National University > Department of Electrical and Computer Engineering
Patel, Anup; AAC Technologies, Edinburgh (UK)
Vanderbemden, Philippe ; Université de Liège - ULiège > Département d'électricité, électronique et informatique (Institut Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
Magnetic shielding up to 0.67 T at 77 K using a stack of high temperature superconducting tape annuli of 26 mm bore
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Claycomb J R Miller J H Jr 1999 Rev. Sci. Instrum. 70 4562 10.1063/1.1150113
Pavese F 1998 Magnetic shielding Handbook of Applied Superconductivity Bristol Institute of Physics Publishing pp 1461 83 pp 1461-83
Bergen A van Weers H J Bruineman C Dhallé M M J Krooshoop H J G ter Brake H J M Ravensberg K Jackson B D Wafelbakker C K 2016 Rev. Sci. Instrum. 87 105109 10.1063/1.4962157
Arpaia P Ballarino A Giunchi G Montenero G 2014 J. Instrum. 9 P04020 10.1088/1748-0221/9/04/P04020
Hinterberger A Gerber S Doser M 2017 J. Instrum. 12 T09002 10.1088/1748-0221/12/09/T09002
Jiles D 2015 Introduction to Magnetism and Magnetic Materials vol 2015 3rd edn Boca Raton, FL CRC Press, Taylor and Francis
Takahata K Nishijima S Ohgami M Okada T Nakagawa S Yoshiwa M 1989 IEEE Trans. Magn. 25 1889 10.1109/20.92674
Sasaki T Itoh I 1996 Cryogenics 36 497 10.1016/0011-2275(96)00020-3
Rabbers J J Oomen M P Bassani E Ripamonti G Giunchi G 2010 Supercond. Sci. Technol. 23 125003 10.1088/0953-2048/23/12/125003
Fagnard J F Elschner S Bock J Dirickx M Vanderheyden B Vanderbemden P 2010 Supercond. Sci. Technol. 23 095012 10.1088/0953-2048/23/9/095012
Wéra L Fagnard J F Namburi D K Shi Y Vanderheyden B Vanderbemden P 2017 IEEE Trans. Appl. Supercond. 27 6800305 10.1109/TASC.2016.2633301
Gozzelino L et al 2020 Supercond. Sci. Technol. 33 044018 10.1088/1361-6668/ab7846
Takahashi K Fujishiro H Ainslie M D 2018 Supercond. Sci. Technol. 31 044005 10.1088/1361-6668/aaae94
Prigozhin L Sokolovsky V 2018 J. Appl. Phys. 123 233901 10.1063/1.5027592
Netter D Lévêque J Ailam E Douine B Rezzoug A Masson P J 2005 IEEE Trans. Appl. Supercond. 15 2186 10.1109/TASC.2005.849608
Douine B Berger K Ivanov N 2021 Materials 14 1636 10.3390/ma14071636
Dorget R et al 2021 Materials 14 2847 10.3390/ma14112847
Sugouchi R et al 2020 IEEE Trans. Appl. Supercond. 30 3601905 10.1109/TASC.2020.2974705
Barna D 2017 Phys. Rev. Accel. Beams 20 041002 10.1103/PhysRevAccelBeams.20.041002
Capobianco-Hogan K G et al 2018 Nucl. Instrum. Methods Phys. Res. A 877 149 10.1016/j.nima.2017.09.034
Statera M Balossino I Barion L Ciullo G Contalbrigo M Lenisa P Lowry M M Sandorfi A M Tagliente G 2018 Nucl. Instrum. Methods Phys. Res. A 882 17 10.1016/j.nima.2017.10.051
Barna D et al 2022 IEEE Trans. Appl. Supercond. 32 4000505 10.1109/TASC.2022.3149726
Bortot L et al 2021 Supercond. Sci. Technol. 34 105001 10.1088/1361-6668/ac1c13
Gozzelino L et al 2019 Supercond. Sci. Technol. 32 034004 10.1088/1361-6668/aaf99e
Giunchi G Barna D Bajas H Brunner K Német A Petrone C 2018 IEEE Trans. Magn. 28 6801705 10.1109/TASC.2018.2816101
Lousberg G Fagnard J F Ausloos M Vanderbemden P Vanderheyden B 2010 IEEE Trans. Appl. Supercond. 20 33 10.1109/TASC.2009.2036855
Gozzelino L Gerbaldo R Ghigo G Laviano F Truccato M 2017 J. Supercond. Novel Magn. 30 749 10.1007/s10948-016-3659-z
Fracasso M Gömöry F Solovyov M Gerbaldo R Ghigo G Laviano F Napolitano A Torsello D Gozzelino L 2022 Materials 15 667 10.3390/ma15020667
Sasaki T Tanaka M Morita M Miyamoto K Hashimoto M 1992 Jpn. J. Appl. Phys. 31 1026 10.1143/JJAP.31.1026
Yang P T Yang W M Chen J L 2017 Supercond. Sci. Technol. 30 085003 10.1088/1361-6668/aa7668
Yang P T Fagnard J-F Vanderbemden P Yang W M 2019 Supercond. Sci. Technol. 32 115015 10.1088/1361-6668/ab4309
Zhang Z Y Matsumoto S Teranishi R Kiyoshi T 2012 Phys. Proc. 27 180 10.1016/j.phpro.2012.03.440
Gu C Chen S Pang T Qu T-M 2017 Appl. Phys. Lett. 110 193505 10.1063/1.4983490
Kvitkovic J Patel S Zhang M Zhang Z Peetz J Marney A Pamidi S 2018 IEEE Trans. Appl. Supercond. 28 9001705 10.1109/TASC.2018.2813538
Kvitkovic J Davis D Zhang M Pamidi S 2015 IEEE Trans. Appl. Supercond. 25 8800304 10.1109/TASC.2014.2368515
Tomków Ł Ciszek M Chorowski M 2015 J. Appl. Phys. 117 043901 10.1063/1.4906399
Solovyov M Šouc J Gömöry F Rikel M O Mikulášová E Ušáková M Ušák E 2017 IEEE Trans. Appl. Supercond. 27 8800204 10.1109/TASC.2016.2627244
Solovyov M Šouc J Kucharovic M Gömöry F 2021 IEEE Trans. Appl. Supercond. 31 4901205 10.1109/TASC.2021.3067065
Fagnard J F Dirickx M Levin G A Barnes P N Vanderheyden B Vanderbemden P 2010 J. Appl. Phys. 108 013910 10.1063/1.3459895
Wéra L Fagnard J-F Levin G Vanderheyden B Vanderbemden P 2015 Supercond. Sci Technol. 28 074001 10.1088/0953-2048/28/7/074001
Chi C et al 2020 Supercond. Sci Technol. 33 095001 10.1088/1361-6668/ab9aa6
Goyal A Parans Paranthaman M Schoop U 2004 MRS Bull. 29 552 10.1557/mrs2004.161
de Boer B et al 2001 Physica C 351 38 10.1016/S0921-4534(00)01687-7
Verebelyi D T et al 2003 Supercond. Sci Technol. 16 L19 10.1088/0953-2048/16/5/101
Miyagi D Yunoki Y Umabuchi M Takahashi N Tsukamoto O 2008 Supercond. Sci Technol. 468 1743 10.1016/j.physc.2008.05.196
Claassen J H Thieme C L H 2008 Supercond. Sci Technol. 21 105003 10.1088/0953-2048/21/10/105003
Statra Y Menana H Douine B 2021 IEEE Trans. Appl. Supercond. 31 5900306 10.1109/TASC.2020.3033697
Kvitkovic J Patel S Pamidi S 2017 IEEE Trans. Appl. Supercond. 27 4700705 10.1109/TASC.2016.2645561
Patel A Baskys A Mitchell-Williams T McCaul A Coniglio W Hänisch J Lao M Glowacki B A 2018 Supercond. Sci Technol. 31 09LT01 10.1088/1361-6668/aad34c
Suyama M Pyon S Iijima Y Awaji S Tamegai T 2021 Supercond. Sci Technol. 34 065004 10.1088/1361-6668/abf621
Zhou W Staines M Jiang Z Badcock R A Long N J Buckley R G Fang J 2018 IEEE Trans. Appl. Supercond. 28 8200108 10.1109/TASC.2017.2781179
Hahn S Kim S B Ahn M C Voccio J Bascuñán J Iwasa Y 2010 IEEE Trans. Appl. Supercond. 20 1037 10.1109/TASC.2010.2043832
Kim S B Kimoto T Hahn S Iwasa Y Voccio J Tomita M 2013 PhysicaC 484 295 10.1016/j.physc.2012.02.042
Yuan X Wang Y Hou Y Kan C Cai C Sun M 2018 IEEE Trans. Appl. Supercond. 28 4603005 10.1109/TASC.2017.2781179
Patel A Hahn S Voccio J Baskys A Hopkins S C Glowacki B A 2017 Supercond. Sci Technol. 30 024007 10.1088/1361-6668/30/2/024007
Vanderbemden P Wéra L Fagnard J F Vanderheyden B Hahn S Patel A 2019 14th European Conf. on Applied Superconductivity (EUCAS 2019) Glasgow, UK 2-LO-OM-06S
Peng Y Zeng Z Zhou D Zhao W Jia Z Guo Y Bai C Fan F Chen Y Cai C 2021 J. Supercond. Nov. Magn. 34 2493 10.1007/s10948-021-05894-y
Grilli F Stavrev S LeFloch Y Costa-Bouzo M Vinot E Klutsch I Meunier G Tixador P Dutoit B 2005 IEEE Trans. Appl. Supercond. 15 17 10.1109/TASC.2004.839774
Zhang M Coombs T A 2012 Supercond. Sci. Technol. 25 015009 10.1088/0953-2048/25/1/015009
Zemeño V M R Grilli F 2014 Supercond. Sci. Technol. 27 044025 10.1088/0953-2048/27/4/044025
Brambilla R Grilli F Martini L Bocchi M Angeli G 2018 IEEE Trans. Appl. Supercond. 28 5207511 10.1109/TASC.2018.2812884
Dular J Geuzaine C Vanderheyden B 2020 IEEE Trans. Appl. Supercond. 30 8200113 10.1109/TASC.2019.2935429
Dular J Harutyunyan M Bortot L Schöps S Vanderheyden B Geuzaine C 2021 IEEE Trans. Appl. Supercond. 31 8200412 10.1109/TASC.2021.3098724
Dular J Brialmont S Vanderbemden P Geuzaine C Vanderheyden B 2022 Finite Element Models for Magnetic Shields made of Stacked Tapes 8th Int. Workshop on Numerical Modelling of High Temperature Superconductors Nancy
Wang J Lin H Huang Y Sun X 2011 IEEE Trans. Magn. 35 1378 81 1378-81 10.1109/TMAG.2010.2081352
Hahn S Voccio J Park D K Kim K M Tomita M Bascuñán J Iwasa Y 2012 IEEE Trans. Appl. Supercond. 22 4302204 10.1109/TASC.2011.2178969
Jackson J D 1999 Classical Electrodynamics College Park, MD Amer. Assoc. Phys. Teachers
Brialmont S Fagnard J F Vanderheyden B Mazaleyrat F Hahn S Patel A Vanderbemden P 2022 IEEE Trans. Appl. Supercond. 32 6602710 10.1109/TASC.2022.3199928
Rhyner J 1993 Physica C 212 292 300 292-300 10.1016/0921-4534(93)90592-E
Life-HTS: Liege university finite element models for high-temperature superconductors (available at: https://www.life-hts.uliege.be/)
GetDP: a general environment for the treatment of discrete problems (available at: https://getdp.info/)
Mager A 1968 J. Appl. Phys. 39 1914 10.1063/1.1656455
Mager A 1970 IEEE Trans. Magn. 6 67 10.1109/TMAG.1970.1066714
Chen D X Pardo E Sanchez A 2006 J. Magn. Magn. Mater. 306 135 6 135-6 10.1016/j.jmmm.2006.02.235
Sridhar S Wu D-H Kennedy W 1989 Phys. Rev. Lett. 63 1873 6 1873-6 10.1103/PhysRevLett.63.1873
Brandt E H 2001 Phys. Rev. B 64 024505 10.1103/PhysRevB.64.024505
Mawatari Y 1996 Phys. Rev. B 54 215 21 215-21 10.1103/PhysRevB.54.13215
Orlando T P Delin K A 1991 Foundations of Applied Superconductivity Reading, MA Addison-Wesley
Cabrera B 1975 The use of superconducting shields for generating ultra low magnetic field regions and several related experiments PhD Thesis Stanford University
Navau C Sanchez A Pardo E Chen D X Bartholomé E Granados X Puig T Obradors X 2005 Phys. Rev. B 71 214507 10.1103/PhysRevB.71.214507
Fagnard J F Vanderheyden B Pardo E Vanderbemden P 2019 Supercond. Sci. Technol. 32 074007 10.1088/1361-6668/ab1824
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.