resistance to interference; interference; domain-general; domain-specific; inferior frontal gyrus
Abstract :
[en] The unitary nature of resistance to interference (RI) processes remains a strongly debated question: are they central cognitive processes or are they specific to the stimulus domains on which they operate? This focused mini-review examines behavioral, neuropsychological and neuroimaging evidence for and against domaingeneral RI processes, by distinguishing visual, verbal phonological and verbal semantic domains. Behavioral studies highlighted overall low associations between RI capacity across domains. Neuropsychological studies mainly report dissociations for RI abilities between the three domains. Neuroimaging studies highlight a left vs. right hemisphere distinction for verbal vs. visual RI, with furthermore distinct neural processes supporting phonological versus semantic RI in the left inferior frontal gyrus. While overall results appear to support the hypothesis of domain-specific RI processes, we discuss a number of methodological caveats that ask for caution in the interpretation of existing studies. [fr] La nature unitaire des processus de résistance à l'interférence (RI) reste une question fortement débattue : s'agit-il de processus cognitifs centraux ou sont-ils spécifiques aux domaines de stimulus sur lesquels ils opèrent ? Cette mini-revue ciblée examine des études comportementales, neuropsychologiques et de neuro-imagerie pour et contre les processus de RI généraux, en distinguant les domaines visuels, phonologiques et sémantiques. Les études comportementales ont mis en évidence des associations globalement faibles entre les capacités de RI dans les différents domaines. Les études neuropsychologiques font principalement état de dissociations entre les capacités de RI dans les trois domaines. Les études de neuro-imagerie mettent en évidence une distinction entre l'hémisphère gauche et l'hémisphère droit pour la RI verbale et la RI visuelle, ainsi que des processus neuronaux distincts pour la RI phonologique et la RI sémantique dans le gyrus frontal inférieur gauche. Bien que les résultats semblent soutenir l'hypothèse de processus de RI spécifiques à un domaine, nous discutons d'un certain nombre de mises en garde méthodologiques qui appellent à la prudence dans l'interprétation des études existantes.
Research Center/Unit :
PsyNCog - Psychologie et Neuroscience Cognitives - ULiège
Gregoire, Coline ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog) ; Faculté de Psychologie, Logopédie et Sciences de l'éducation, Boulevard du Rectorat B33, Liège, Belgium
Majerus, Steve ; Université de Liège - ULiège > Psychologie et Neuroscience Cognitives (PsyNCog) ; Université de Liège - ULiège > Département de Psychologie ; Université de Liège - ULiège > Département de Psychologie > Mémoire et langage
Language :
English
Title :
Resisting Visual, Phonological, and Semantic Interference -Same or Different Processes? A Focused Mini-Review
Alternative titles :
[fr] Résister à l'interférence visuelle, phonologique et sémantique - Processus identiques ou différents ? Une mini-review
Publication date :
11 April 2023
Journal title :
Psychologica Belgica
ISSN :
0033-2879
eISSN :
2054-670X
Publisher :
Association Belge des Sciences Psychologique, Gand, Belgium Ubiquity Press
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abel, S., Dressel, K., Bitzer, R., Kümmerer, D., Mader, I., Weiller, C., & Huber, W. (2009). The separation of processing stages in a lexical interference fMRI-paradigm. NeuroImage, 44(3), 1113-1124. DOI: https://doi.org/10.1016/j.neuroimage.2008.10.018
Abel, S., Dressel, K., Weiller, C., & Huber, W. (2012). Enhancement and suppression in a lexical interference fMRI‐paradigm. Brain and Behavior, 2(2), 109-127. DOI: https://doi.org/10.1002/brb3.31
Araneda, R., Volder, A. G. D., Deggouj, N., & Renier, L. (2015). Altered Inhibitory Control and Increased Sensitivity to Cross-Modal Interference in Tinnitus during Auditory and Visual Tasks. PLOS ONE, 10(3), e0120387. DOI: https://doi.org/10.1371/journal.pone.0120387
Attout, L., Grégoire, C., Querella, P., & Majerus, S. (2022). Neural evidence for a separation of semantic and phonological control processes. Neuropsychologia, 176, 108377. DOI: https://doi.org/10.1016/j.neuropsychologia.2022.108377
Barde, L. H. F., Schwartz, M. F., Chrysikou, E. G., & Thompson-Schill, S. L. (2010). Reduced short-term memory span in aphasia and susceptibility to interference: Contribution of material-specific maintenance deficits. Neuropsychologia, 48(4), 909-920. DOI: https://doi.org/10.1016/j.neuropsychologia.2009.11.010
Biegler, K. A., Crowther, J. E., & Martin, R. C. (2008). Consequences of an inhibition deficit for word production and comprehension: Evidence from the semantic blocking paradigm. Cognitive Neuropsychology, 25(4), 493-527. DOI: https://doi.org/10.1080/02643290701862316
Cowan, N., & Barron, A. (1987). Cross-modal, auditory-visual Stroop interference and possible implications for speech memory. Perception & Psychophysics, 41(5), 393-401. DOI: https://doi.org/10.3758/BF03203031
Cowan, N., & Morey, C. C. (2007). How Can Dual-Task Working Memory Retention Limits Be Investigated? Psychological Science, 18(8), 686-688. DOI: https://doi.org/10.1111/j.1467-9280.2007.01960.x
Damian, M. F. (2003). Articulatory duration in single-word speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 416-431. DOI: https://doi.org/10.1037/0278-7393.29.3.416
Damian, M. F., Vigliocco, G., & Levelt, W. J. M. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81(3), B77-B86. DOI: https://doi.org/10.1016/S0010-0277(01)00135-4
Dempster, F. N. (1993). Resistance to interference: Developmental changes in a basic processing mechanism. Emerging themes in cognitive development: Volume I: Foundations, 3-27. DOI: https://doi.org/10.1007/978-1-4613-9220-0_1
De Baene, W., Duyck, W., Brass, M., & Carreiras, M. (2015). Brain Circuit for Cognitive Control Is Shared by Task and Language Switching. Journal of Cognitive Neuroscience, 27(9), 1752-1765. DOI: https://doi.org/10.1162/jocn_a_00817
de Zubicaray, G. I., Wilson, S. J., McMahon, K. L., & Muthiah, S. (2001). The semantic interference effect in the picture-word paradigm: An event-related fMRI study employing overt responses. Human Brain Mapping, 14(4), 218-227. DOI: https://doi.org/10.1002/hbm.1054
Demonty, M., Coppalle, R., Bastin, C., & Geurten, M. (2022). The use of distraction to improve episodic memory in ageing: A review of methods and theoretical implications. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale. DOI: https://doi.org/10.1037/cep0000293
Dempster, F. N., & Corkill, A. J. (1999). Interference and Inhibition in Cognition and Behavior: Unifying Themes for Educational Psychology. Educational Psychology Review, 11(1), 1-88. DOI: https://doi.org/10.1023/A:1021992632168
Donohue, S. E., Appelbaum, L. G., Park, C. J., Roberts, K. C., & Woldorff, M. G. (2013). Cross-Modal Stimulus Conflict: The Behavioral Effects of Stimulus Input Timing in a Visual-Auditory Stroop Task. PLOS ONE, 8(4), e62802. DOI: https://doi.org/10.1371/journal.pone.0062802
Driver, J., & Baylis, G. C. (1993). Cross-modal negative priming and interference in selective attention. Bulletin of the Psychonomic Society, 31(1), 45-48. DOI: https://doi.org/10.3758/BF03334137
Elliott, E. M., Cowan, N., & Valle-Inclan, F. (1998). The nature of cross-modal color-word interference effects. Perception & Psychophysics, 60(5), 761-767. DOI: https://doi.org/10.3758/BF03206061
Elliott, E. M., Morey, C. C., Morey, R. D., Eaves, S. D., Shelton, J. T., & Lutfi-Proctor, D. A. (2014). The role of modality: Auditory and visual distractors in Stroop interference. Journal of Cognitive Psychology, 26(1), 15-26. DOI: https://doi.org/10.1080/20445911.2013.859133
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16(1), 143-149. DOI: https://doi.org/10.3758/BF03203267
Frank, M. J., Loughry, B., & O'Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 137-160. DOI: https://doi.org/10.3758/CABN.1.2.137
Freedman, M. L., & Martin, R. C. (2001). Dissociable components of short-term memory and their relation to long-term learning. Cognitive Neuropsychology, 18(3), 193-226. DOI: https://doi.org/10.1080/02643290126002
Gauvin, H. S., McMahon, K. L., & de Zubicaray, G. I. (2021). Top-down resolution of lexico-semantic competition in speech production and the role of the left inferior frontal gyrus: An fMRI study. Language, Cognition and Neuroscience, 36(1), 1-12. DOI: https://doi.org/10.1080/23273798.2020.1762904
Glaser, W. R., & Düngelhoff, F.-J. (1984). The time course of picture-word interference. Journal of Experimental Psychology: Human Perception and Performance, 10, 640-654. DOI: https://doi.org/10.1037/0096-1523.10.5.640
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., Ogar, J. M., Rohrer, J. D., Black, S., Boeve, B. F., Manes, F., Dronkers, N. F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B. L., Knopman, D. S., Hodges, J. R., Mesulam, M. M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006-1014. DOI: https://doi.org/10.1212/WNL.0b013e31821103e6
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and Cognition, 1(2), 67-81. DOI: https://doi.org/10.1017/S1366728998000133
Gruber, S. A., Rogowska, J., Holcomb, P., Soraci, S., & Yurgelun-Todd, D. (2002). Stroop Performance in Normal Control Subjects: An fMRI Study. NeuroImage, 16(2), 349-360. DOI: https://doi.org/10.1006/nimg.2002.1089
Guerreiro, M. J. S., Murphy, D. R., & Van Gerven, P. W. M. (2013). Making sense of age-related distractibility: The critical role of sensory modality. Acta Psychologica, 142(2), 184-194. DOI: https://doi.org/10.1016/j.actpsy.2012.11.007
Hamilton, A. C., & Martin, R. C. (2005). Dissociations among tasks involving inhibition: A single-case study. Cognitive, Affective, & Behavioral Neuroscience, 5(1), 1-13. DOI: https://doi.org/10.3758/CABN.5.1.1
Hamilton, A. C., & Martin, R. C. (2007). Proactive Interference in a Semantic Short-Term Memory Deficit: Role of Semantic and Phonological Relatedness. Cortex, 43(1), 112-123. DOI: https://doi.org/10.1016/S0010-9452(08)70449-0
Hanauer, J. B., & Brooks, P. J. (2005). Contributions of response set and semantic relatedness to cross-modal Stroop-like picture-word interference in children and adults. Journal of Experimental Child Psychology, 90(1), 21-47. DOI: https://doi.org/10.1016/j.jecp.2004.08.002
Harnishfeger, K. K. (1995). 6 - The development of cognitive inhibition: Theories, definitions, and research evidence. In F. N. Dempster, C. J. Brainerd, & C. J. Brainerd (Éds.), Interference and Inhibition in Cognition (pp. 175-204). Academic Press. DOI: https://doi.org/10.1016/B978012208930-5/50007-6
Hazeltine, E., & Wifall, T. (2011). Searching working memory for the source of dual-task costs. Psychological Research, 75(6), 466. DOI: https://doi.org/10.1007/s00426-011-0343-6
Hirst, R. J., Kicks, E. C., Allen, H. A., & Cragg, L. (2019). Cross-modal interference-control is reduced in childhood but maintained in aging: A cohort study of stimulus-and response-interference in cross-modal and unimodal Stroop tasks. Journal of Experimental Psychology: Human Perception and Performance, 45(5), 553. DOI: https://doi.org/10.1037/xhp0000608
Hodgson, C., Schwartz, M. F., Schnur, T. T., & Brecher, A. (2005). Facilitation and interference in phonological blocked-cyclic naming. Brain and Language, 95(1), 46-47. DOI: https://doi.org/10.1016/j.bandl.2005.07.017
Ikeda, Y., Hirata, S., Okuzumi, H., & Kokubun, M. (2010). Features of Stroop and Reverse-Stroop Interference: Analysis by Response Modality and Evaluation. Perceptual and Motor Skills, 110(2), 654-660. DOI: https://doi.org/10.2466/pms.110.2.654-660
Jedidi, Z., Manard, M., Balteau, E., Degueldre, C., Luxen, A., Phillips, C., Collette, F., Maquet, P., & Majerus, S. (2021). Incidental Verbal Semantic Processing Recruits the Frontotemporal Semantic Control Network. Cerebral Cortex (New York, N.Y.: 1991), 31(12), 5449-5459. DOI: https://doi.org/10.1093/cercor/bhab169
Jefferies, E., Baker, S. S., Doran, M., & Ralph, M. A. L. (2007). Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia, 45(5), 1065-1079. DOI: https://doi.org/10.1016/j.neuropsychologia.2006.09.009
Klaus, J., & Hartwigsen, G. (2019). Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Human Brain Mapping, 40(11), 3279-3287. DOI: https://doi.org/10.1002/hbm.24597
Kuzmina, E., & Weekes, B. S. (2017). Role of cognitive control in language deficits in different types of aphasia. Aphasiology, 31(7), 765-792. DOI: https://doi.org/10.1080/02687038.2016.1263383
Lenhard, W., & Lenhard, A. (2017). Computation of Effect Sizes [Data set]. Unpublished. DOI: https://doi.org/10.13140/RG.2.2.17823.92329
Leung, H.-C., Skudlarski, P., Gatenby, J. C., Peterson, B. S., & Gore, J. C. (2000). An Event-related Functional MRI Study of the Stroop Color Word Interference Task. Cerebral Cortex, 10(6), 552-560. DOI: https://doi.org/10.1093/cercor/10.6.552
Logie, R. H., Zucco, G. M., & Baddeley, A. D. (1990). Interference with visual short-term memory. Acta Psychologica, 75(1), 55-74. DOI: https://doi.org/10.1016/0001-6918(90)90066-O
Maldjian, J. A., Laurienti, P. J., & Burdette, J. H. (2004). Precentral gyrus discrepancy in electronic versions of the Talairach atlas. Neuroimage, 21(1), 450-455. DOI: https://doi.org/10.1016/j.neuroimage.2003.09.032
Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233-1239. DOI: https://doi.org/10.1016/S1053-8119(03)00169-1
Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504-516. DOI: https://doi.org/10.1016/j.bbr.2016.10.026
Martin, R. C., & He, T. (2004). Semantic short-term memory and its role in sentence processing: A replication. Brain and Language, 89(1), 76-82. DOI: https://doi.org/10.1016/S0093-934X(03)00300-6
Martin, R. C., & Lesch, M. F. (1996). Associations and dissociations between language impairment and list recall: Implications for models of STM. Models of short-term memory (pp. 149-178).
McCall, J., van der Stelt, C. M., DeMarco, A., Dickens, J. V., Dvorak, E., Lacey, E., Snider, S., Friedman, R., & Turkeltaub, P. (2022). Distinguishing semantic control and phonological control and their role in aphasic deficits: A task switching investigation. Neuropsychologia, 173, 108302. DOI: https://doi.org/10.1016/j.neuropsychologia.2022.108302
McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, J. G. (2003). A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 41(3), 293-303. DOI: https://doi.org/10.1016/S0028-3932(02)00162-8
McGeoch, J. A. (1932). Forgetting and the law of disuse. Psychological review, 39(4), 352. DOI: https://doi.org/10.1037/h0069819
McGeoch, J. A., & Underwood, B. J. (1943). Tests of the two-factor theory of retroactive inhibition. Journal of Experimental Psychology, 32(1), 1. DOI: https://doi. org/10.1037/h0058174
McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668-2682. DOI: https://doi.org/10.1016/j.neuropsychologia.2008.04.023
Melton, A. W., & Irwin, J. M. (1940). The influence of degree of interpolated learning on retroactive inhibition and the overt transfer of specific responses. The American Journal of Psychology, 53(2), 173-203. DOI: https://doi.org/10.2307/1417415
Miles, C., Madden, C., & Jones, D. M. (1989). Cross-modal, auditory-visual Stroop interference: A reply to Cowan and Barron (1987). Perception & Psychophysics, 45(1), 77-81. DOI: https://doi.org/10.3758/BF03208036
Miyake, A., Friedman, N., Emerson, M. J., Witzki, A., & Wager, T. (2000). The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. DOI: https://doi.org/10.1006/cogp.1999.0734
Morey, C. C., & Mall, J. T. (2012). Cross-Domain Interference Costs during Concurrent Verbal and Spatial Serial Memory Tasks are Asymmetric. Quarterly Journal of Experimental Psychology, 65(9), 1777-1797. DOI: https://doi.org/10.1080/17470218.2012.668555
Morey, C. C., Morey, R. D., van der Reijden, M., & Holweg, M. (2013). Asymmetric cross-domain interference between two working memory tasks: Implications for models of working memory. Journal of Memory and Language, 69(3), 324-348. DOI: https://doi.org/10.1016/j.jml.2013.04.004
Morimoto, H. M., Hirose, S., Chikazoe, J., Jimura, K., Asari, T., Yamashita, K., Miyashita, Y., & Konishi, S. (2008). On Verbal/Nonverbal Modality Dependence of Left and Right Inferior Prefrontal Activation during Performance of Flanker Interference Task. Journal of Cognitive Neuroscience, 20(11), 2006-2014. DOI: https://doi.org/10.1162/jocn.2008.20138
Müller, G. E., & Pilzecker, A. (1900). Experimentelle beiträge zur lehre vom gedächtniss (Vol. 1). JA Barth.
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1-17. DOI: https://doi.org/10.3758/CABN.7.1.1
Noorani, I. (2014). LATER models of neural decision behavior in choice tasks. Frontiers in Integrative Neuroscience, 8, 67. DOI: https://doi.org/10.3389/fnint.2014.00067
Oberauer, K., Lange, E., & Engle, R. W. (2004). Working memory capacity and resistance to interference. Journal of Memory and Language, 51(1), 80-96. DOI: https://doi.org/10.1016/j.jml.2004.03.003
O'Reilly, R. C., Herd, S. A., & Pauli, W. M. (2010). Computational models of cognitive control. Current Opinion in Neurobiology, 20(2), 257-261. DOI: https://doi.org/10.1016/j.conb.2010.01.008
Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: An interference model of complex span. Psychonomic Bulletin & Review, 19(5), 779-819. DOI: https://doi.org/10.3758/s13423-012-0272-4
Parris, B. A., Hasshim, N., Wadsley, M., Augustinova, M., & Ferrand, L. (2022). The loci of Stroop effects: A critical review of methods and evidence for levels of processing contributing to color-word Stroop effects and the implications for the loci of attentional selection. Psychological Research, 86(4), 1029-1053. DOI: https://doi.org/10.1007/s00426-021-01554-x
Parris, B. A., Wadsley, M. G., Hasshim, N., Benattayallah, A., Augustinova, M., & Ferrand, L. (2019). An fMRI Study of Response and Semantic Conflict in the Stroop Task. Frontiers in Psychology, 10, 2426. DOI: https://doi.org/10.3389/fpsyg.2019.02426
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological bulletin, 116(2), 220. DOI: https://doi.org/10.1037/0033-2909.116.2.220
Patterson, K., Shewell, C., Coltheart, M., Sartori, G., & Job, R. (1987). Speak and spell: Dissociations and word-class effects. The Cognitive Neuropsychology of Language. Lawrence Erlbaum Associates, Inc (pp. 273-294).
Paulesu, E., Goldacre, B., Scifo, P., Cappa, S. F., Gilardi, M. C., Castiglioni, I., Perani, D., & Fazio, F. (1997). Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport, 8(8), 2011-2016. DOI: https://doi.org/10.1097/00001756-199705260-00042
Peterson, B. S., Kane, M. J., Alexander, G. M., Lacadie, C., Skudlarski, P., Leung, H.-C., May, J., & Gore, J. C. (2002). An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. Cognitive Brain Research, 13(3), 427-440. DOI: https://doi.org/10.1016/S0926-6410(02)00054-X
Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237-1258. DOI: https://doi.org/10.1016/S0006-3223(99)00056-6
Postman, L. (1961). The Present Status of Interference Theory. In Verbal learning and verbal behavior (pp. 152-196). McGraw-Hill Book Company. DOI: https://doi.org/10.1037/11182-007
Postman, L., & Underwood, B. J. (1973). Critical issues in interference theory. Memory & Cognition, 1(1), 19-40. DOI: https://doi.org/10.3758/BF03198064
Redding, G. M., & Gerjets, D. A. (1977). Stroop effect: Interference and facilitation with verbal and manual responses. Perceptual and Motor Skills, 45(1), 11-17. DOI: https://doi.org/10.2466/pms.1977.45.1.11
Roelofs, A. (2005). The visual-auditory color-word Stroop asymmetry and its time course. Memory & Cognition, 33(8), 1325-1336. DOI: https://doi.org/10.3758/BF03193365
Schneider, W. (1993). Varieties of working memory as seen in biology and in connectionist/control architectures. Memory & Cognition, 21(2), 184-192. DOI: https://doi.org/10.3758/BF03202731
Schneider, W., & Detweiler, M. (1988). A Connectionist/Control Architecture for Working Memory. In Psychology of Learning and Motivation, 21, 53-119. Elsevier. DOI: https://doi.org/10.1016/S0079-7421(08)60026-2
Schnur, T. T., Schwartz, M. F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2), 199-227. DOI: https://doi.org/10.1016/j.jml.2005.10.002
Schnur, T. T., Schwartz, M. F., Kimberg, D. Y., Hirshorn, E., Coslett, H. B., & Thompson-Schill, S. L. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca's area. Proceedings of the National Academy of Sciences, 106(1), 322-327. DOI: https://doi.org/10.1073/pnas.0805874106
Schumacher, E. H., Schwarb, H., Lightman, E., & Hazeltine, E. (2011). Investigating the modality specificity of response selection using a temporal flanker task. Psychological Research, 75(6), 499. DOI: https://doi.org/10.1007/s00426-011-0369-9
Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125(1), 4-27. DOI: https://doi.org/10.1037/0096-3445.125.1.4
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224-232. DOI: https://doi.org/10.1016/j.neuropsychologia.2007.07.015
Snyder, H. R., Feigenson, K., & Thompson-Schill, S. L. (2007). Prefrontal Cortical Response to Conflict during Semantic and Phonological Tasks. Journal of Cognitive Neuroscience, 19(5), 761-775. DOI: https://doi.org/10.1162/jocn.2007.19.5.761
Stephan, K. E., Marshall, J. C., Friston, K. J., Rowe, J. B., Ritzl, A., Zilles, K., & Fink, G. R. (2003). Lateralized cognitive processes and lateralized task control in the human brain. Science, 301(5631), 384-386. DOI: https://doi.org/10.1126/science.1086025
Stroop, J. R. (1992). Studies of interference in serial verbal reactions. Journal of Experimental Psychology: General, 121(1), 15-23. DOI: https://doi.org/10.1037/00963445.121.1.15
Sulpizio, S., Job, R., Leoni, P., & Scaltritti, M. (2022). Prepotent task-irrelevant semantic information is dampened by domain-specific control mechanisms during visual word recognition. Quarterly Journal of Experimental Psychology, 75(3), 390-405. DOI: https://doi.org/10.1177/17470218211030863
Taylor, S. F., Kornblum, S., Lauber, E. J., Minoshima, S., & Koeppe, R. A. (1997). Isolation of Specific Interference Processing in the Stroop Task: PET Activation Studies. NeuroImage, 6(2), 81-92. DOI: https://doi.org/10.1006/nimg.1997.0285
Thompson, H., Davey, J., Hoffman, P., Hallam, G., Kosinski, R., Howkins, S., Wooffindin, E., Gabbitas, R., & Jefferies, E. (2017). Semantic control deficits impair understanding of thematic relationships more than object identity. Neuropsychologia, 104. DOI: https://doi.org/10.1016/j.neuropsychologia.2017.08.013
Tipper, S. P. (2001). Does Negative Priming Reflect Inhibitory Mechanisms? A Review and Integration of Conflicting Views. The Quarterly Journal of Experimental Psychology Section A, 54(2), 321-343. DOI: https://doi.org/10.1080/713755969
Tipper, S. P., & Cranston, M. (1985). Selective Attention and Priming: Inhibitory and Facilitatory Effects of Ignored Primes. The Quarterly Journal of Experimental Psychology Section A, 37(4), 591-611. DOI: https://doi.org/10.1080/14640748508400921
Tipper, S. P., & Driver, J. (1988). Negative priming between pictures and words in a selective attention task: Evidence for semantic processing of ignored stimuli. Memory & Cognition, 16(1), 64-70. DOI: https://doi.org/10.3758/BF03197746
Tipper, S. P., MacQueen, G. M., & Brehaut, J. C. (1988). Negative priming between response modalities: Evidence for the central locus of inhibition in selective attention. Perception & Psychophysics, 43(1), 45-52. DOI: https://doi.org/10.3758/BF03208972
Underwood, B. J., & Ekstrand, B. R. (1966). An analysis of some shortcomings in the interference theory of forgetting. Psychological Review, 73(6), 540. DOI: https://doi.org/10.1037/h0023883
van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. NeuroImage, 27(3), 497-504. DOI: https://doi.org/10.1016/j.neuroimage.2005.04.042
Verbeke, P., & Verguts, T. (2021). Neural Synchrony for Adaptive Control. Journal of Cognitive Neuroscience, 33(11), 2394-2412. DOI: https://doi.org/10.1162/jocn_a_01766
Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do Mental Processes Share a Domain-General Resource? Psychological Science, 21(3), 384-390. DOI: https://doi.org/10.1177/0956797610361340
Verguts, T. (2017a). Computational Models of Cognitive Control. In T. Egner (Éd.), The Wiley Handbook of Cognitive Control (pp. 125-142). John Wiley & Sons, Ltd. DOI: https://doi.org/10.1002/9781118920497.ch8
Verguts, T. (2017b). Binding by Random Bursts: A Computational Model of Cognitive Control. Journal of Cognitive Neuroscience, 29(6), 1103-1118. DOI: https://doi.org/10.1162/jocn_a_01117
Wager, T. D., Sylvester, C.-Y. C., Lacey, S. C., Nee, D. E., Franklin, M., & Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. NeuroImage, 27(2), 323-340. DOI: https://doi.org/10.1016/j.neuroimage.2005.01.054
Weeks, J. C., Grady, C. L., Hasher, L., & Buchsbaum, B. R. (2020). Holding On to the Past: Older Adults Show Lingering Neural Activation of No-Longer-Relevant Items in Working Memory. Journal of Cognitive Neuroscience, 32(10), 1946-1962. DOI: https://doi.org/10.1162/jocn_a_01596
Wiecki, T. V., & Frank, M. J. (2012). A computational model of inhibitory control in frontal cortex and basal ganglia (arXiv:1112.0778). arXiv. http://arxiv.org/abs/1112.0778
Zhu, D. C., Zacks, R. T., & Slade, J. M. (2010). Brain activation during interference resolution in young and older adults: An fMRI study. NeuroImage, 50(2), 810-817. https://doi.org/10.1016/j.neuroimage.2009.12.087
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.