PET; time processing; brain imaging review; attention; supplementary motor area
Abstract :
[en] This paper first provides a survey of the expanding brain imaging literature in the field of time processing. showing that particular task features (discrete vs rhythmic, perceptual vs motor) do not significantly affect the basic pattern of activation observed. Next, positron emission tomography (PET) data obtained in a timing task (temporal reproduction) with two distinct duration ranges (2.2-3.2 and 9-13 s) are reported. The stimuli consisted of vibrations applied to the subject's right middle finger. When the vibration ended, the subject estimated an interval identical to its length before pressing a response button. The control task used cued responses with comparable intervals and stimuli, The pattern of activation obtained in the timing task as compared to control mainly included areas having attentional functions (the right dorsolateral prefrontal, inferior parietal, and anterior cingulate cortices), and the supplementary motor area (SMA). No significant difference was seen as a function of the duration range. It is argued, firstly. that involvement of the attentional areas derives from specific relations between attention and the temporal accumulator, as described by dominant timing models. and, secondly, that the SMA, or more probably one of its subregions, subserves time processing
Disciplines :
Neurosciences & behavior
Author, co-author :
Macar, F.
Lejeune, Helga ; Université de Liège - ULiège > Unité de psychobiologie des processus temporels
Kirsch, Murielle ; Centre Hospitalier Universitaire de Liège - CHU > Anesthésie et réanimation
Ferrara, André ; Université de Liège - ULiège > Département des sciences cognitives > Neuroscience comportementale et psychopharmacologie expér.
Pouthas, V.
Vidal, F.
Maquet, Pierre ; Université de Liège - ULiège > Centre de recherches du cyclotron
Language :
English
Title :
Activation of the supplementary motor area and of attentional networks during temporal processing
Publication date :
February 2002
Journal title :
Experimental Brain Research
ISSN :
0014-4819
eISSN :
1432-1106
Publisher :
Springer, New York, United States - New York
Volume :
142
Issue :
4
Pages :
475-485
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
The original publication is available at http://www.springerlink.com/content/39dv3ddexmwwgylw/?p=81e7282736c64b80a8407e38b8dd9351&pi=0
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Artieda J., Pastor M.A., Lacruz F., Obeso J.A. (1992) Temporal discrimination is abnormal in Parkinson's disease. Brain 115:199-210.
Block R.A., Zakay D. (1996) Models of psychological time revisited. Time and mind , Helfrich H (ed). Hogrefe and Huber, Bern; 171-195.
Brown S.W. (1997) Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Percept Psychophys 59:1118-1140.
Brunia C.H.M., De Jong B.M., Van den Berg-Lenssen M.M.C., Paans A.M.J. (2000) Visual feedback about time estimation is related to a right hemisphere activation measured by PET. Exp Brain Res 130:328-337.
Casini L., Macar F. (1996) Prefrontal slow potentials in temporal compared to nontemporal tasks. J Psychophysiol 10:225-264.
Casini L., Macar F., Giard M.-H. (1999) Relation between level of prefrontal activity and subject's performance. J Psychophysiol 13:117-125.
Church R.M. (1984) Properties of the internal clock. Ann N Y Acad Sci , Gibbon J, Allan L (eds) Timing and time perception; 423:566-582.
Coull J.T., Nobre A.C. (1998) Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426-7435.
Frackowiak R.S.J., Friston K.J., Frith C.D., Dolan R.J., Mazziotta J.C. Human brain function, Academic Press, San Diego; 1997.
Frith C.D., Friston K., Liddle P.F., Frackowiak R.S.J. (1991) Willed action and the prefrontal cortex in man: A study with PET. Proc R Soc Lond (Biol) 244:241-246.
Gazzaniga M.S., Ivry R.B., Mangun G.R. Cognitive neuroscience: The biology of mind, Norton & Co. New York; 1998.
Gibbon J., Church R.M., Meck W.H. (1984) Scalar timing in memory. Ann N Y Acad Sci , Gibbon J, Allan L (eds) Timing and time perception; 423:52-77.
Gibbon J., Malapani C., Dale C.L., Gallistel C.R. (1997) Toward a neurobiology of temporal cognition: Advances and challenges. Curr Opin Neurobiol 7:170-184.
Gruber O., Kleinschmidt A., Binkofski F., Steimetz H., Von Cramon D.Y. (2000) Cerebral correlates of working memory for temporal information. Neuroreport 11:1689-1693.
Halsband U., Ito N., Tanji J., Freund H.J. (1993) The role of premotor cortex and the supplementary motor area in the temporal control of movement in man. Brain 116:243-246.
Harrington D.L., Haaland K.Y. (1999) Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Rev Neurosci 10:91-116.
Harrington D.L., Haaland K.Y., Hermanowicz N. (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3-12.
Harrington D.L., Haaland K.Y., Knight R.T. (1998) Cortical networks underlying mechanisms of time perception. J Neurosci 18:1085-1095.
Ivry R.B. (1993) Cerebellar involvement in the explicit representation of temporal information. Ann N Y Acad Sci , Tallal P (ed) Temporal information processing in the nervous system; 682:214-230.
Ivry R.B., Keele S.W. (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136-152.
Jäncke L., Specht K., Mirzazade S., Loose R., Himmelbach M., Lutz K., Shah N.J. (1998) A parametric analysis of the "rate effect" in the sensorimotor cortex: A functional magnetic resonance imaging analysis in human subjects. Neurosci Lett 252:37-40.
Jäncke L., Loose R., Lutz K., Specht K., Shah N.J. (2000) Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res 10:51-66.
Jenkins I.H., Brooks D.J., Nixon P.D., Frackowiak R.S.J., Passingham R.E. (1994) Motor sequence learning: A study with positron emission tomography. J Neurosci 14:3775-3790.
Juepner M., Rijntjes M., Weiller C., Faiss J.H., Timmann D., Mueller S.P., Diener H.C. (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540-1545.
Jürgens U. (1984) The efferent and afferent connections of the supplementary motor area. Brain Res 300:63-81.
Kawashima R., Inoue K., Sugiura M., Okada K., Ogawa A., Fukuda H. (1999) A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92:107-112.
Kawashima R., Okuda J., Umetsu A., Sugiura M., Inoue K., Suzuki K., Tabuchi M., Tsukiura T., Narayan S.L., Nagasaka T., Yanagawa I., Fujii T., Takahashi S., Fukuda H., Yamadori A. (2000) Human cerebellum plays an important role in memory-timed finger movement: An fMRI study. J Neurophysiol 83:1079-1087.
Kimura D. Neuromotor mechanisms in human communication, Oxford University Press, New York; 1993.
Klingberg T., O'Sullivan B.T., Roland P.E. (1997) Bilateral activation of fronto-parietal networks by incrementing demands in a working memory task. Cereb Cortex 7:465-471.
Lacruz F., Artieda J., Pastor M.A., Obeso J.A. (1991) The anatomical basis for somaesthetic temporal discrimination in humans. J Neurol Neurosurg Psychiatry 54:1077-1081.
Lang W., Obrig H., Lindinger G., Cheyne D., Deecke L. (1990) Supplementary motor area activation while tapping bimanually different rhythms in musicians. Exp Brain Res 79:504-514.
Lejeune H. (1999) Switching or gating? The attentional challenge in cognitive models of psychological time. Behav Proc 44:127-145.
Lejeune H., Maquet P., Pouthas V., Bonnet M., Casini L., Macar F., Vidal F., Ferrara A., Timsit-Berthier M. (1997) Brain activation correlates of synchronization: A PET study. Neurosci Lett 235:21-24.
Macar F., Vidal F., Casini L. (1999) The supplementary motor area in motor and sensory timing: Evidence from slow brain potential changes. Exp Brain Res 125:271-280.
Malapani C., Khati C., Dubois B., Gibbon J. (1997) Damage to cerebellar cortex impairs precision of time estimation in the seconds range. Cogn Neurosci Soc Meeting , Boston; 45.
Malapani C., Ratkin B., Levy R., Meck W.H., Deweer B., Dubois B., Gibbon J. (1998) Coupled temporal memories in Parkinson's disease: A dopamine-related dysfunction. J Cogn Neurosci 10:316-331.
Maquet P., Lejeune H., Pouthas V., Bonnet M., Casini L., Macar F., Timsit-Berthier M., Vidal F., Ferrara A., Degueldre C., Quaglia L., Delfiore G., Luxen A., Woods R., Mazziotta J.C., Comar D. (1996) Brain activation induced by estimation of duration. A PET study. Neuroimage 3:119-126.
Meck W.M. (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3:227-242.
Nagarajan S.S., Blake D.T., Wright B.A., Byl N., Merzenich M.M. (1998) Practice-related improvements in somatosensory interval discrimination exhibits temporal specificity but generalizes across skin location, hemisphere and modality. J Neurosci 18:1559-1570.
Nichelli P. (1993) The neuropsychology of human temporal information processing. Handbook of neurophysiology, vol IV , F, Grafman J (eds). Elsevier Science, Amsterdam; 339-369.
Nichelli P., Alway D., Grafman J. (1996) Perceptual timing in cerebellar degeneration. Neuropsychologia 34:863-871.
Pardo J.V., Fox P.T., Raichle M.E. (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61-64.
Penhune V.B., Zatorre R.J., Evans A.C. (1998) Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10:752-765.
Picard N., Strick P.L. (1996) Motor areas of the medial wall: A review of their location and functional activation. Cereb Cortex 6:342-353.
Posner M.I., Petersen S.E. (1990) The attention system of human brain. Annu Rev Neurosci 13:25-42.
Pouthas V., Garnero L., Ferrandez A.-M., Renault B. (2000) ERPs and TEP analysis of time perception: Spatial and temporal brain mapping during visual discrimination tasks. Hum Brain Mapp 10:49-60.
Pouthas V., George N., Poline J.B., Van de Moorteele P.F., Hugueville L., Pfeuty M., Renault B., LeBihan D. (2001) Modulation of mesial frontocentral cortex activity by duration to be estimated. J Cogn Neurosci Suppl 120:142.
Rammsayer T., Classen W. (1997) Impaired temporal discrimination in Parkinson disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. Int J Neurosci 91:45-55.
Rao S.M., Harrington D.L., Haaland K.Y., Bobholz J.A., Cox R.W., Binder J.R. (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528-5535.
Rao S.M., Mayer A.R., Harrington D.L. (2001) The evolution of brain activation during temporal processing. Nature Neurosci 4:317-323.
Rizzolatti G., Luppino G., Matelli M. (1998) The organization of the cortical motor system: New concepts. Electroencephalogr Clin Neurophysiol 106:283-296.
Rubia K., Overmeyer S., Taylor E., Brammer M., Williams S., Simmons A., Andrew C., Bullmore E. (1998) Prefrontal involvement in "temporal bridging" and timing movement. Neuropsychologia 36:1283-1293.
Schubotz R., Friederici A.D., Von Cramon Y. (2000) Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage 11:1-12.
Sergent J., Zuck E., Terriah S., MacDonald B. (1992) Distributed neural network underlying musical sight-reading and keyboard performance. Science 257:106-109.
Smith E., Jonides J. (1999) Storage and executive processes in the frontal lobes. Science 283:1657-1661.
Talairach J., Tournoux P. Co-planar stereotaxic atlas of the human brain, George Thieme Verlag, Stuttgart; 1988.
Thomas E.A.C., Weaver W.B. (1975) Cognitive processing and time perception. Percept Psychophys 17:363-367.
Tracy J.I., Faro S.H., Mohamed F.B., Pinsk M., Pinus A. (2000) Functional localization of a "time keeper" function separate from attentional resources and task strategy. Neuroimage 11:228-242.
Vidal F., Bonnet M., Macar F. (1995) Programming the duration of a motor sequence: Role of the primary and supplementary motor areas in man. Exp Brain Res 106:339-350.
Westheimer G. (1999) Discrimination of short time intervals by the human observer. Brain Res 129:121-126.
Zakay D. (1989) Subjective time and attentional resource allocation. An integrated model of time estimation. Time and human cognition: A life span perspective , Levin I, Zakay D (eds). North Holland, Amsterdam; 365-397.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.