Asteroseismology; Methods: analytical; Stars: oscillations; Acoustic oscillation; Evolutionary stage; Methods:analytical; Multi-cavity; Oscillation mode; Oscillation spectrum; Reflection and transmission; Resonance condition; Star oscillations; Astronomy and Astrophysics; Space and Planetary Science
Abstract :
[en] Context. Over recent decades, asteroseismology has proven to be a powerful method for probing stellar interiors. Analytical descriptions of the global oscillation modes, in combination with pulsation codes, have provided valuable help in processing and interpreting the large amount of seismic data collected, for instance, by space-borne missions CoRoT, Kepler, and TESS. These prior results have paved the way to more in-depth analyses of the oscillation spectra of stars in order to delve into subtle properties of their interiors. This purpose conversely requires innovative theoretical descriptions of stellar oscillations. Aims. In this paper, we aim to analytically express the resonance condition of the adiabatic oscillation modes of spherical stars in a very general way that is applicable at different evolutionary stages. Methods. In the present formulation, a star is represented as an acoustic interferometer composed of a multitude of resonant cavities where waves can propagate and the short-wavelength JWKB approximation is met. Each cavity is separated from the adjacent ones by barriers, which correspond to regions either where waves are evanescent or where the JWKB approximation fails. Each barrier is associated with a reflection and transmission coefficient. The stationary modes are then computed using two different physical representations: (1) studying the infinite-time reflections and transmissions of a wave energy ray through the ensemble of cavities or (2) solving the linear boundary value problem using the progressive matching of the wave function from one barrier to the adjacent one between the core and surface. Results. Both physical pictures provide the same resonance condition, which ultimately turns out to depend on a number of parameters: the reflection and transmission phase lags introduced by each barrier, the coupling factor associated with each barrier, and the wave number integral over each resonant cavity. Using such a formulation, we can retrieve, in a practical way, the usual forms derived in previous works in the case of mixed modes with two or three cavities coupled though evanescent barriers, low- and large-amplitude glitches, and the simultaneous presence of evanescent regions and glitches. Conclusions. The resonance condition obtained in this work provides a new tool that is useful in predicting the oscillation spectra of stars and interpreting seismic observations at different evolutionary stages in a simple way. Practical applications require more detailed analyses to make the link between the reflection-transmission parameters and the internal structure. These aspects will be the subject of a future paper.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Pinçon, C. ; Lerma, Observatoire de Paris, Sorbonne Université, Université Psl, Cnrs, Paris, France ; Star Institute, Université de Liège, Liège, Belgium
Takata, M.; Department of Astronomy, School of Science, University of Tokyo, Tokyo, Japan ; Lesia, Observatoire de Paris, Université Psl, Cnrs, Sorbonne Université, Université de Paris, Meudon, France
Language :
English
Title :
Multi-cavity gravito-acoustic oscillation modes in stars: A general analytical resonance condition
Acknowledgements. During this work, C.P. was funded by a postdoctoral fellowship of Chargé de Recherche from F.R.S.-FNRS (Belgium). C.P. also acknowledges financial support from Sorbonne Université (EMERGENCE project). M.T. is partially supported by JSPS KAKENHI Grant Number 18K03695.
Domingo, V., Fleck, B., & Poland, A. I. 1995, Sol. Phys., 162, 1
Dréau, G., Cunha, M. S., Vrard, M., & Avelino, P. P. 2020, MNRAS, 497, 1008
Dziembowski, W. 1977, Acta Astron., 27, 95
Dziembowski, W., & Goode, P. R. 1984, Mem. Soc. Astron. It., 55, 185
Farnir, M., Dupret, M. A., Salmon, S. J. A. J., Noels, A., & Buldgen, G. 2019, A&A, 622, A98
Farnir, M., Dupret, M. A., Salmon, S. J. A. J., Noels, A., & Buldgen, G. 2020a, in Stars and their Variability Observed from Space, eds. C. Neiner, W. W. Weiss, D. Baade, et al., 281
Farnir, M., Dupret, M. A., Buldgen, G., et al. 2020b, A&A, 644, A37
Gehan, C., Mosser, B., Michel, E., Samadi, R., & Kallinger, T. 2018, A&A, 616, A24
Gehan, C., Mosser, B., Michel, E., & Cunha, M. S. 2021, A&A, 645, A124
Gough, D. O. 1990, in Comments on Helioseismic Inference, eds. Y. Osaki, & H. Shibahashi, 367, 283
Gough, D. O. 2002, in Stellar Structure and Habitable Planet Finding, eds. B. Battrick, F. Favata, I. W. Roxburgh, & D. Galadi, ESA SP, 485, 65
Gough, D. O. 2007, Astron. Nachr., 328, 273
Gough, D. O., & Sekii, T. 1993, in GONG 1992. Seismic Investigation of the Sun and Stars, ed. T. M. Brown, ASP Conf. Ser., 42, 177
Gough, D. O., & Thompson, M. J. 1988, in Advances in Helio-and Asteroseismology, eds. J. Christensen-Dalsgaard, & S. Frandsen, 123, 155
Gough, D. O., & Vorontsov, S. V. 1995, MNRAS, 273, 573
Goupil, M. J., Mosser, B., Marques, J. P., et al. 2013, A&A, 549, A75
Grotsch-Noels, A., Deheuvels, S., & CoRot Team 2016, The CoRoT Legacy Book: The Adventure of the Ultra High Precision Photometry from Space, 181
Hekker, S., & Christensen-Dalsgaard, J. 2017, A&ARv, 25, 1
Hekker, S., Elsworth, Y., & Angelou, G. C. 2018, A&A, 610, A80
Hill, H. A., & Rosenwald, R. D. 1986, Ap&SS, 126, 335
Houdek, G., & Gough, D. O. 2007, MNRAS, 375, 861
Kawaler, S. D., & Bradley, P. A. 1994, ApJ, 427, 415
Khan, S., Hall, O. J., Miglio, A., et al. 2018, ApJ, 859, 156
Lebreton, Y., & Goupil, M. J. 2012, A&A, 544, L13
Ledoux, P. 1951, ApJ, 114, 373
Ledoux, P., & Walraven, T. 1958, Handb. Phys., 51, 353
Leibacher, J. W., & GONG Project Team 1998, in Structure and Dynamics of the Interior of the Sun and Sun-like Stars, ed. S. Korzennik, ESA SP, 418, 3
Lighthill, J. 1978, Waves in Fluids (Cambridge: Cambridge University Press)
Loi, S. T., & Papaloizou, J. C. B. 2020, MNRAS, 491, 708
Mazumdar, A., Michel, E., Antia, H. M., & Deheuvels, S. 2012, A&A, 540, A31
Mazumdar, A., Monteiro, M. J. P. F. G., Ballot, J., et al. 2014, ApJ, 782, 18
Miglio, A., Montalbán, J., Eggenberger, P., & Noels, A. 2008a, Astron. Nachr., 329, 529
Miglio, A., Montalbán, J., Noels, A., & Eggenberger, P. 2008b, MNRAS, 386, 1487
Montalbán, J., Miglio, A., Noels, A., Scuflaire, R., & Ventura, P. 2010, ApJ, 721, L182
Montalbán, J., Miglio, A., Noels, A., et al. 2013, ApJ, 766, 118
Monteiro, M. J. P. F. G., & Thompson, M. J. 2005, MNRAS, 361, 1187
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 1994, A&A, 283, 247
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 2000, MNRAS, 316, 165
Mosser, B., & Miglio, A. 2016, The CoRoT Legacy Book: The Adventure of the Ultra High Precision Photometry from Space, 197
Mosser, B., Benomar, O., Belkacem, K., et al. 2014, A&A, 572, L5
Mosser, B., Pinçon, C., Belkacem, K., Takata, M., & Vrard, M. 2017, A&A, 600, A1
Mosser, B., Gehan, C., Belkacem, K., et al. 2018, A&A, 618, A109
Noll, A., Deheuvels, S., & Ballot, J. 2021, A&A, 647, A187
Olver, F. W. J. 1975, Phil. Trans. R. Soc. London Ser. A, 278, 137
Perez Hernandez, F., & Christensen-Dalsgaard, J. 1994, MNRAS, 269, 475
Pinçon, C. 2019,. ArXiv e-prints [arXiv:1907.00201]
Pinçon, C., Takata, M., & Mosser, B. 2019, A&A, 626, A125
Pinçon, C., Goupil, M. J., & Belkacem, K. 2020, A&A, 634, A68