ERA-5; interannual variability; marine heatwaves; Mediterranean Sea; teleconnection patterns; trends; Oceanography; Global and Planetary Change; Aquatic Science; Water Science and Technology; Environmental Science (miscellaneous); Ocean Engineering
Abstract :
[en] Marine Heatwaves (MHWs) are considered one of the main consequences of global warming. MHWs negatively affect ecosystems, threaten economies, and intensify storms. In this work, we investigated the main characteristics of MHWs in the Mediterranean Sea from 1982 to 2020 and examined the relationship between their frequency and teleconnection patterns (e.g., East Atlantic Pattern (EAP) and East Atlantic/Western Russian Pattern (EATL/WRUS)). We then focused on the most intense MHW events that occurred in 2019 in the western Mediterranean Sea (WMB) and eastern Mediterranean Sea (EMB) by examining the link between the SST anomaly (SSTA) and various atmospheric forcings during these events. Our results showed that MHWs were more frequent and intense in the WMB than in the EMB on temporal and spatial scales, while the duration of MHWs was longer in the EMB. The trend of MHW frequency and duration in the Mediterranean Sea between 1982 and 2020 was about 1.3 ± 0.25 events/decade and 3.6 ± 1.16 days/decade, respectively. More than half of all MHW events in the Mediterranean Sea were recorded in the last decade (2011-2020). The results also showed that the EAP plays an important role in modulating MHW frequency in the Mediterranean Sea, with a strong positive correlation of 0.74, while the EATL/WRUS was strongly negatively correlated with MHW frequency in the EMB, with a correlation of about -0.60. In 2019, six MHW events were observed in the WMB, three of which were classified as strong events (SST exceeded two times the climatological threshold), while two events were detected and classified as strong events in the EMB. In the WMB, the 2019 MHWs extended to a depth of about 20 meters into the water column, while the MHWs in the EMB extended to greater depths of over 50 meters. The strong MHW events in the WMB were associated with a large positive heat flux anomaly and a shallow mixed layer. In the EMB, the high SSTA associated with MHW events caused heat loss from the ocean to the atmosphere and was associated with a shallow mixed layer and anomalously low mean sea level pressure. Finally, a negative relationship between the SSTA and surface Chl-a concentrations was observed during the 2019 MHW events. This negative influence of MHWs on Chl-a was more pronounced in the WMB than in the EMB, suggesting that the WMB MHW events were intense enough to infer a response to chlorophyll-a concentrations.
Precision for document type :
Review article
Disciplines :
Earth sciences & physical geography
Author, co-author :
Elawady, Manal ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER) ; Faculty of Science, Alexandria University, Alexandria, Egypt > Oceanography Department
Alvera Azcarate, Aida ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Marine heatwaves characteristics in the Mediterranean Sea: Case study the 2019 heatwave events
This work benefits financial support of the Aspirant F.R.S.-FNRS (Fonds de la Recherche Scientifique de Belgique, Communauté Française de Belgique) through funding the position of AB and funding a Aspirant - ASP grant. Acknowledgments
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allam A. Moussa R. Najem W. Bocquillon C. (2020). “Chapter 1 - hydrological cycle, Mediterranean basins hydrology,” in Water resources in the Mediterranean region. Eds. Zribi M. Brocca L. Tramblay Y. Molle F. (Elsevier), 1–21. doi: 10.1016/B978-0-12-818086-0.00001-7
Amaya D. J. Alexander M. A. Capotondi A. Deser C. Karnauskas K. B. Miller A. J. et al. (2021). Are long-term changes in mixed layer depth influencing north pacific marine heatwaves? Bull. Am. Meteorological Soc. 102, S59–S66. doi: 10.1175/BAMS-D-20-0144.1
Amaya D. J. Miller A. J. Xie S.-P. Kosaka Y. (2020). Physical drivers of the summer 2019 north pacific marine heatwave. Nat. Commun. 11, 1903. doi: 10.1038/s41467-020-15820-w
Barnston A. G. Livezey R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Rev. 115, 1083–1126. doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
Benthuysen J. A. Oliver E. C. J. Chen K. Wernberg T. (2020). Editorial: Advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.00147
Bethoux J. P. Gentili B. Raunet J. Tailliez D. (1990). Warming trend in the western Mediterranean deep water. Nature 347, 660–662. doi: 10.1038/347660a0
Bond N. A. Cronin M. F. Freeland H. Mantua N. (2015). Causes and impacts of the 2014 warm anomaly in the NE pacific. Geophysical Res. Lett. 42, 3414–3420. doi: 10.1002/2015GL063306
Chefaoui R. M. Duarte C. M. Serrão E. A. (2018). Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob Change Biol. 24, 4919–4928. doi: 10.1111/gcb.14401
Criado-Aldeanueva F. Soto-Navarro J. (2020). Climatic indices over the Mediterranean Sea: A review. Appl. Sci. 10, 5790. doi: 10.3390/app10175790
Darmaraki S. Somot S. Sevault F. Nabat P. (2019a). Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 46, 9813–9823. doi: 10.1029/2019GL082933
Darmaraki S. Somot S. Sevault F. Nabat P. Cabos Narvaez W. D. Cavicchia L. et al. (2019b). Future evolution of marine heatwaves in the Mediterranean Sea. Clim Dyn 53, 1371–1392. doi: 10.1007/s00382-019-04661-z
Eakin C. M. Morgan J. A. Heron S. F. Smith T. B. Liu G. Alvarez-Filip L. et al. (2010). Caribbean Corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PloS One 5, e13969. doi: 10.1371/journal.pone.0013969
Escudier R. Clementi E. Omar M. Cipollone A. Pistoia J. Aydogdu A. et al. (2020). Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents) (Version 1) Data set. Copernicus Monitoring Environment Marine Service (CMEMS). doi: 10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1
Fenoglio-Marc L. Schöne T. Illigner J. Becker M. Manurung P. Khafid (2012). Sea Level change and vertical motion from satellite altimetry, tide gauges and GPS in the Indonesian region. Mar. Geodesy 35, 137–150. doi: 10.1080/01490419.2012.718682
Frölicher T. L. Laufkötter C. (2018). Emerging risks from marine heat waves. Nat. Commun. 9, 650. doi: 10.1038/s41467-018-03163-6
Garnesson P. Mangin A. Bretagnon M. (2022). OCEAN COLOUR PRODUCTION CENTRE satellite observation Copernicus-GlobColour products. doi: 10.48670/moi-00281
Garrabou J. Coma R. Bensoussan N. Bally M. Chevaldonné P. Cigliano M. et al. (2009). Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biol. 15, 1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x
Hamdeno M. Nagy H. Ibrahim O. Mohamed B. (2022). Responses of satellite chlorophyll-a to the extreme Sea surface temperatures over the Arabian and omani gulf. Remote Sens. 14, 4653. doi: 10.3390/rs14184653
Hamed K. H. Ramachandra Rao A. (1998). A modified Mann-Kendall trend test for autocorrelated data. J. Hydrology 204, 182–196. doi: 10.1016/S0022-1694(97)00125-X
Hellerman S. Rosenstein M. (1983). Normal monthly wind stress over the world ocean with error estimates. J. Phys. Oceanogr. 13, 1093–1104. doi: 10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2
Hersbach H. Bell B. Berrisford P. Hirahara S. Horányi A. Muñoz-Sabater J. et al. (2020). The ERA5 global reanalysis. Q.J.R. Meteorol. Soc 146, 1999–2049. doi: 10.1002/qj.3803
Hobday A. J. Alexander L. V. Perkins S. E. Smale D. A. Straub S. C. Oliver E. C. J. et al. (2016). A hierarchical approach to defining marine heatwaves. Prog. Oceanography 141, 227–238. doi: 10.1016/j.pocean.2015.12.014
Hobday A. Oliver E. Sen Gupta A. Benthuysen J. Burrows M. Donat M. et al. (2018). Categorizing and naming marine heatwaves. Oceanog 31(2), 162173. doi: 10.5670/oceanog.2018.205
Holbrook N. J. Scannell H. A. Sen Gupta A. Benthuysen J. A. Feng M. Oliver E. C. J. et al. (2019). A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624. doi: 10.1038/s41467-019-10206-z
Hughes T. P. Anderson K. D. Connolly S. R. Heron S. F. Kerry J. T. Lough J. M. et al. (2018). Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science 359, 80–83. doi: 10.1126/science.aan8048
Ibrahim O. Mohamed B. Nagy H. (2021). Spatial variability and trends of marine heat waves in the Eastern Mediterranean Sea over 39 years. JMSE 9, 643. doi: 10.3390/jmse9060643
Juza M. Fernández-Mora À. Tintoré J. (2022)Sub-Regional marine heat waves in the Mediterranean Sea from observations: Long-term surface changes, Sub-surface and coastal responses (Accessed March 25, 2022).
Kuroda H. Yokouchi K. (2017). Interdecadal decrease in potential fishing areas for pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceanogr. 26, 439–454. doi: 10.1111/fog.12207
Le Grix N. Zscheischler J. Laufkötter C. Rousseaux C. S. Frölicher T. L. (2021). Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137. doi: 10.5194/bg-18-2119-2021
Leonard M. Westra S. Phatak A. Lambert M. van den Hurk B. McInnes K. et al. (2014). A compound event framework for understanding extreme impacts. WIREs Climate Change 5, 113–128. doi: 10.1002/wcc.252
Lionello P. Malanotte-Rizzoli P. Boscolo R. Alpert P. Artale V. Li L. et al. (2006). “The Mediterranean climate: An overview of the main characteristics and issues,” in Developments in earth and environmental sciences Mediterranean. Eds. Lionello P. Malanotte-Rizzoli P. Boscolo R. (Elsevier), 1–26. doi: 10.1016/S1571-9197(06)80003-0
Longhurst A. R. (2007) “Chapter 9 - THE ATLANTIC OCEAN,” in Ecological geography of the Sea, 2nd ed.Ed. Longhurst A. R. (Burlington: Academic Press), 131–273. doi: 10.1016/B978-012455521-1/50010-3
Mannino A. M. Balistreri P. Deidun A. (2017). The marine biodiversity of the Mediterranean Sea in a changing climate: The impact of biological invasions. IntechOpen. doi: 10.5772/intechopen.69214
Marx W. Haunschild R. Bornmann L. (2021). Heat waves: a hot topic in climate change research. Theor. Appl. Climatol 146, 781–800. doi: 10.1007/s00704-021-03758-y
Mavrakis A. F. Tsiros I. X. (2019. The abrupt increase in the Aegean sea surface temperature during June 2007 – a marine heatwave event? Weather 74, 201–207. doi: 10.1002/wea.3296
Mills K. E. PERSHING A. J. BROWN C. J. CHEN Y. CHIANG F.-S. HOLLAND D. S. et al. (2013). Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195. doi: 10.5670/oceanog.2013.27
Miyama T. Minobe S. Goto H. (2021). Marine heatwave of Sea surface temperature of the oyashio region in summer in 2010–2016. Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.576240
Mohamed B. Abdallah A. M. Alam El-Din K. Nagy H. Shaltout M. (2019a). Inter-annual variability and trends of Sea level and Sea surface temperature in the Mediterranean Sea over the last 25 years. Pure Appl. Geophys. 176, 3787–3810. doi: 10.1007/s00024-019-02156-w
Mohamed B. Ibrahim O. Nagy H. (2022a). Sea Surface temperature variability and marine heatwaves in the black Sea. Remote Sens. 14, 2383. doi: 10.3390/rs14102383
Mohamed B. Mohamed A. Alam El-Din K. Nagy H. Elsherbiny A. (2019b). Sea Level changes and vertical land motion from altimetry and tide gauges in the southern levantine basin. J. Geodynamics 128, 1–10. doi: 10.1016/j.jog.2019.05.007
Mohamed B. Nagy H. Ibrahim O. (2021). Spatiotemporal variability and trends of marine heat waves in the red Sea over 38 years. JMSE 9, 842. doi: 10.3390/jmse9080842
Mohamed B. Nilsen F. Skogseth R. (2022b)Marine heatwaves characteristics in the barents Sea based on high resolution satellite dat–2020 (Accessed June 12, 2022).
Nadia P. Zavatarelli M. Arneri E. Crise A. Ravaioli M. (2006). The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. Harvard University Press, Cambridge, MA The Sea, Volume 14B: The Global Coastal Ocean
Nagy H. Elgindy A. Pinardi N. Zavatarelli M. Oddo P. (2017). A nested pre-operational model for the Egyptian shelf zone: Model configuration and validation/calibration. Dynamics Atmospheres Oceans 80, 75–96. doi: 10.1016/j.dynatmoce.2017.10.003
Nagy H. Lyons K. Nolan G. Cure M. Dabrowski T. (2020). A regional operational model for the north East Atlantic: Model configuration and validation. J. Mar. Sci. Eng. 8, 673. doi: 10.3390/jmse8090673
Nagy H. Mohamed B. Ibrahim O. (2021). Variability of heat and water fluxes in the red Sea using ERA5 dat–2020. J. Mar. Sci. Eng. 9, 1276. doi: 10.3390/jmse9111276
Olita A. Sorgente R. Natale S. Gaber?ek S. Ribotti A. Bonanno A. et al. (2007). Effects of the 2003 European heatwave on the central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3, 273–289. doi: 10.5194/os-3-273-2007
Oliver E. C. Benthuysen J. A. Bindoff N. L. Hobday A. J. Holbrook N. J. Mundy C. N. et al. (2017). The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101. doi: 10.1038/ncomms16101
Pastor F. Valiente J. A. Khodayar S. (2020). A warming Mediterranean: 38 years of increasing Sea surface temperature. Remote Sens. 12, 2687. doi: 10.3390/rs12172687
Pastor F. Valiente J. A. Palau J. L. (2018). Sea Surface temperature in the Mediterranean: Trends and spatial pattern–2016. Pure Appl. Geophys. 175, 4017–4029. doi: 10.1007/s00024-017-1739-z
Pinardi N. Allen I. Demirov E. De Mey P. Korres G. Lascaratos A. et al. (2003). The Mediterranean ocean forecasting system: First phase of implementatio–2001. Annales Geophysicae 21, 3–20. doi: 10.5194/angeo-21-3-2003
Reynolds R. W. Smith T. M. Liu C. Chelton D. B. Casey K. S. Schlax M. (2007). Daily high-Resolution-Blended analyses for Sea surface temperature. G.J. Climate 20, 5473–5496. doi: 10.1175/2007JCLI1824.1
Sánchez-Benítez A. Goessling H. Pithan F. Semmler T. Jung T. (2022). The July 2019 European heat wave in a warmer climate: Storyline scenarios with a coupled model using spectral nudging. J. Climate 35, 2373–2390. doi: 10.1175/JCLI-D-21-0573.1
Schlegel R. W. Oliver E. C. J. Chen K. (2021). Drivers of marine heatwaves in the Northwest Atlantic: The role of air–Sea interaction during onset and decline. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.627970
Selig E. R. Casey K. S. Bruno J. F. (2010). New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management: Global variability in temperature anomalies on coral reefs. Global Ecol. Biogeography 19, 397–411. doi: 10.1111/j.1466-8238.2009.00522.x
Sen Gupta A. Thomsen M. Benthuysen J. A. Hobday A. J. Oliver E. Alexander L. V. et al. (2020). Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359. doi: 10.1038/s41598-020-75445-3
Skliris N. Sofianos S. S. Gkanasos A. Axaopoulos P. Mantziafou A. Vervatis V. (2011). Long-term sea surface temperature variability in the Aegean Sea. Adv. Oceanography Limnology 2, 125–139. doi: 10.1080/19475721.2011.601325
Skliris N. Sofianos S. Gkanasos A. Mantziafou A. Vervatis V. Axaopoulos P. et al. (2012). Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dynamics 62, 13–30. doi: 10.1007/s10236-011-0493-5
Smale D. A. Wernberg T. Oliver E. C. J. Thomsen M. Harvey B. P. Straub S. C. et al. (2019). Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. doi: 10.1038/s41558-019-0412-1
Soukissian T. Sotiriou M.-A. (2022). Long-term variability of wind speed and direction in the Mediterranean basin. Wind 2, 513–534. doi: 10.3390/wind2030028
Sparnocchia S. Schiano M. E. Picco P. Bozzano R. Cappelletti A. (2006). The anomalous warming of summer 2003 in the surface layer of the central ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452. doi: 10.5194/angeo-24-443-2006
Tanhua T. Hainbucher D. Schroeder K. Cardin V. Álvarez M. Civitarese G. (2013). The Mediterranean Sea system: A review and an introduction to the special issue. Ocean Sci. 9, 789–803. doi: 10.5194/os-9-789-2013
Thomson R. E. Emery W. J. (2014). Data analysis methods in physical oceanography (Elsevier Inc.: Amsterdam, The Netherlands). doi: 10.1016/C2010-0-66362-0
Vautard R. Aalst M. Boucher O. Drouin A. Haustein K. Kreienkamp F. et al. (2020). Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 15, 094077. doi: 10.1088/1748-9326/aba3d4
Wang F. Shao W. Yu H. Kan G. He X. Zhang D. et al. (2020). Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series (Accessed March 10, 2022).
Wilks D. S. (2019). Statistical methods in the atmospheric sciences (Cambridge, MA: Academic Press). doi: 10.1016/C2017-0-03921-6
Zhao Z. Marin M. (2019). A MATLAB toolbox to detect and analyze marine heatwaves. JOSS 4, 1124. doi: 10.21105/joss.01124
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.