BINA 2023, Paul Hickson et al. : submitted pdf paper "Serendipitous Detection of Orbital Debris by the International Liquid Mirror Telescope: First Result"
[en] Orbital debris presents a growing risk to space operations, and is becoming a significant source of contamination of astronomical images. Much of the debris population is uncatalogued, making the impact more difficult to assess. We present initial results from the first ten nights of commissioning observations with the International Liquid Mirror Telescope, in which images were examined for streaks produced by orbiting objects including satellites, rocket bodies and other forms of debris. We detected 83 streaks and performed a correlation analysis to attempt to match these with objects in the public database. 48% of these objects were uncorrelated, indicating substantial incompleteness in the database, even for some relatively-bright objects. We were able to detect correlated objects to an estimated magnitude of 14.5 and possibly about two magnitudes greater for the faintest uncorrelated object.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hickson, Paul; University of British Columbia, Vancouver, Canada
Ailawadhi, Bhavya; Aryabhatta Research Institute of Observational sciencES, Nainital, India ; Deen Dayal, Upadhyay Gorakhpur University, Gorakhpur, India
Akhunov, Talat; National University of Uzbekistan, Tashkent, Uzbekistan ; Ulugh Beg Astronomical Institute, Tashkent, Uzbekistan
Borra, Ermanno; Laval University, Quebec, Canada
Dubey, Monalisa; Aryabhatta Research Institute of Observational sciencES, Nainital, India ; Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
Dukiya, Naveen; Aryabhatta Research Institute of Observational sciencES, Nainital, India ; Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
Fu, Jiuyang; University of British Columbia, Vancouver, Canada
Grewal, Baldeep; University of British Columbia, Vancouver, Canada
Kumar, Brajesh; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Misra, Kuntal; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Negi, Vibhore; Aryabhatta Research Institute of Observational sciencES, Nainital, India ; Deen Dayal, Upadhyay Gorakhpur University, Gorakhpur, India
Pranshu, Kumar; Aryabhatta Research Institute of Observational sciencES, Nainital, India ; University off Calcutta, Kolkata, India
Sun, Ethen; University of British Columbia, Vancouver, Canada
Surdej, Jean ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) ; Institut d'Astrophysique et de Géophysique, Liège University, Belgium
Boley, A. C. and Byers, M. (2021) Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth. NatSR, 11, 10642. https://doi.org/10.1038/s41598-021-89909-7.
Hainaut, O. R. and Williams, A. P. (2020) Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains. A&A, 636, A121. https://doi.org/10.1051/0004-6361/202037501.
Hickson, P. (2019) OCS: A flexible observatory control system for robotic telescopes with application to detection and characterization of orbital debris. In First International Orbital Debris Conference, vol. 2109 of LPICo. https://www.hou.usra.edu/meetings/orbitaldebris2019/orbital2019paper/pdf/6066.pdf.
Hoots, F. R. and Roehrich, R. L. (1980) Models for propagation of NORAD element sets. Tech. Rep. 3, Aerospace Defense Center, Peterson Air Force Base, Colorado SPrings (CO). https://apps.dtic.mil/sti/citations/ADA093554.
Kessler, D. J. and Cour-Palais, B. G. (1978) Collision frequency of artificial satellites: The creation of a debris belt. JGRA, 83(A6), 2637–2646. https://doi.org/https://doi.org/10.1029/JA083iA06p02637.
Kruk, S., Garcia-Martin, P., Popescu, M., Aussel, B., Dillmann, S., Perks, M., Lund, T., Merin, B., Thomson, J. R., Karadag, S. and McCaughrean, M. (2023) The impact of satellite trails on Hubble Space Telescope observations. NatAs, 7, 262–268. https://doi.org/10.1038/s41550-023-01903-3.
Lawler, S. M., Boley, A. C. and Rein, H. (2021) Visibility predictions for near-future satellite megaconstellations: Latitudes near 50° will experience the worst light pollution. AJ, 163(1), 21. https://doi.org/10.3847/1538-3881/ac341b.
Liou, J.-C. and Johnson, N. L. (2006) Risks in space from orbiting debris. Sci, 311, 340–341. https://doi.org/10.1126/science1121337.
Pradhan, B., Hickson, P. and Surdej, J. (2019) Serendipitous detection and size estimation of space debris using a survey zenith-pointing telescope. AcAau, 164, 77–83. https://doi.org/10.1016/j.actaastro.2019.07.008.
Shara, M. M. and Johnston, M. D. (1986) Artificial earth satellites crossing the fields of view of, and colliding with, orbiting space telescopes. PASP, 98, 814–820. https://doi.org/10.1086/131830.
Surdej, J., Hickson, P., Borra, H., Swings, J.-P., Habraken, S., Akhunov, T., Bartczak, P., Chand, H., De Becker, M., Delchambre, L., Finet, F., Kumar, B., Pandey, A., Pospieszalska, A., Pradhan, B., Sagar, R., Wertz, O., De Cat, P., Denis, S., de Ville, J., Jaiswar, M. K., Lampens, P., Nanjappa, N. and Tortolani, J.-M. (2018) The 4-m International Liquid Mirror Telescope. BSRSL, 87, 68–79. https://doi.org/10.25518/0037-9565.7498.
Tyson, J. A., Željko Ivezić, Bradshaw, A., Rawls, M. L., Xin, B., Yoachim, P., Parejko, J., Greene, J., Sholl, M., Abbott, T. M. C. and Polin, D. (2020) Mitigation of LEO satellite brightness and trail effects on the Rubin Observatory LSST. AJ, 160(5), 226. https://doi.org/10.3847/1538-3881/abba3e.
Vallado, D. A., Crawford, P., Hujsak, R. and Kelso, T. S. (2006) Revisiting Spacetrack Report #3. In AIAA Astrodynamics Specialists Conference and Exhibit, August 2006. https://doi.org/10.2514/6.2006-6753.