[en] Gravitational lensing may enrich our view of the distant Universe and affect our physical understanding of various classes of extragalactic objects. The great interest in gravitational lensing comes from the fact that this phenomenon can be used as an astrophysical and cosmological tool to solve a number of scientific problems. Quasars and gravitationally
lensed quasars (GLQs) are of particular interest since they sufficiently probe the deep Universe and can be bright enough to be detected and investigated. But to do this successfully we need to know how many multiply imaged quasars we will be able to detect in the ILMT field of view, how to analyze the observational data, their sensitivity, what problems and
challenges await us. In this poster, we try to briefly highlight these points: why GLQs are interesting to us, what objects should we observe, how many of them, etc? According to our last estimations, the number of quasars which may be detected with the ILMT is ~ 6700. So, at least 15 of them should consist of multiply imaged quasars.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Akhunov, Talat ; National University of Uzbekistan, Tashkent, Uzbekistan
Bhavya Ailawadhi; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Ermanno Borra; Laval University, Quebec, Canada
Monalisa Dubey; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Naveen Dukiya; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Jiuyang Fu; University of British Columbia, Vancouver, Canada
Baldeep Grewal; University of British Columbia, Vancouver, Canada
Paul Hickson; University of British Columbia, Vancouver, Canada
Brajesh Kumar; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Kuntal Misra; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Vibhore Negi; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Kumar Pranshu; Aryabhatta Research Institute of Observational sciencES, Nainital, India
Ethen Sun; University of British Columbia, Vancouver, Canada
Surdej, Jean ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO)
Akhunov, T., Wertz, O., Elyiv, A., Gaisin, B., R.and Artamonov, Dudinov, V., Nuritdinov, S., Delvaux, C., Sergeyev, A., Gusev, A., Bruevich, V., Burkhonov, O., Zheleznyak, A., Ezhkova, O. and Surdej, J. (2017) Adaptive PSF fitting – a highly performing photometric method and light curves of the GLS H1413+117: time delays and micro-lensing effects. MNRAS, 465(3), 3607–3621. https://doi.org/10.1093/mnras/stw2951.
Bertin, E. and Arnouts, S. (1996) SExtractor: Software for source extraction. A&AS, 117(2), 393–404. https://doi.org/10.1051/aas:1996164.
Claeskens, J.-F. and Surdej, J. (2002) Gravitational lensing in quasar samples. A&ARv, 10(4), 263–311. https://doi.org/10.1007/s001590100010.
Finet, F. (2013) The International Liquid Mirror Telescope Project: Optical Quality Tests and Prospective Detection of Multiply Imaged Quasars. Ph.D. thesis, Université de Liège. https://hdl.handle.net/2268/146860.
Fukugita, M. and Turner, E. L. (1991) Gravitational lensing frequencies: galaxy cross-sections and selection effects. MNRAS, 253(1), 99–106. https://doi.org/10.1093/mnras/253.1.99.
Kayo, I., Inada, N., Oguri, M., Hall, P. B., Kochanek, C. S., Richards, G. T., Schneider, D. P., York, D. G. and Pan, K. (2007) A new quadruply lensed quasar: SDSS J125107.57+293540.5. AJ, 134(4), 1515–1521. https://doi.org/10.1086/521652.
Kochanek, C. S. (2006) Strong gravitational lensing. In Gravitational Lensing: Strong, Weak and Micro, edited by Schneider, P., Kochanek, C. S. and Wambsganss, J., vol. 33 of Saas-Fee Advanced Courses, chap. 2, pp. 91–268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30310-7_2.
Mandal, A. K., Pradhan, B., Surdej, J., Stalin, C. S., Sagar, R. and Mathew, B. (2020) Quasar catalogue for the astrometric calibration of the forthcoming ILMT survey. JApA, 41, 22. https://doi.org/10.1007/s12036-020-09642-x.
Schneider, P., Ehlers, J. and Falco, E. E. (1992) Gravitational Lenses. Springer-Verlag, Berlin, Heidelberg, New York. https://doi.org/10.1007/978-3-662-03758-4.
Stetson, P. B. (1987) DAOPHOT – A computer program for crowded field stellar photometry. PASP, 99, 191–222. https://doi.org/10.1086/131977.
Surdej, J. and Claeskens, J.-F. (2002) Gravitational lensing. In The Century of Space Science, edited by Bleeker, J. A. M., Geiss, J. and Huber, M. C. E., chap. 20, pp. 441–459. Kluwer Academic Publishers, Dordrecht (NL).
Surdej, J., Hickson, P., Borra, H., Swings, J.-P., Habraken, S., Akhunov, T., Bartczak, P., Chand, H., De Becker, M., Delchambre, L., Finet, F., Kumar, B., Pandey, A., Pospieszalska, A., Pradhan, B., Sagar, R., Wertz, P., O. andd De Cat, Denis, S., de Ville, J., Jaiswar, M., Lampens, P., Nanjappa, N. and Tortolani, J.-M. (2018) The 4-m International Liquid Mirror Telescope. BSRSL, 87, 68–79. https://doi.org/10.25518/0037-9565.7498.
Vakulik, V. G., Schild, R. E., Dudinov, V. N., Minakov, A. A., Nuritdinov, S. N., Tsvetkova, V. S., Zheleznyak, A. P., Konichek, V. V., Sinelnikov, I. Y., Burkhonov, O. A., Artamonov, B. P. and Bruevich, V. V. (2004) Color effects associated with the 1999 microlensing brightness peaks in gravitationally lensed quasar Q2237+0305. A&A, 420(2), 447–457. https://doi.org/10.1051/0004-6361:20034104.