Ancient DNA; Fjords; Methane; Seeps; Siboglinids; Sulfide oxidation; Multidisciplinary
Abstract :
[en] We used ancient DNA (aDNA) extraction methods to sequence museum voucher samples of Oligobrachia webbi, a frenulate siboglinid polychaete described from a northern Norwegian fjord over fifty years ago. Our sequencing results indicate a genetic match with the cryptic seep species, Oligobrachia haakonmosbiensis (99% pairwise identity for 574 bp mtCOI fragments). Due to its similarity with O. webbi, the identity of O. haakonmosbiensis has been a matter of debate since its description, which we have now resolved. Furthermore, our results demonstrate that chemosynthesis-based siboglinids, that constitute the bulk of the biomass at Arctic seeps are not seep specialists. Our data on sediment geochemistry and carbon and nitrogen content reveal reduced conditions in fjords/sounds, similar to those at seep systems. Accumulation and decomposition of both terrestrial and marine organic matter results in the buildup of methane and sulfide that apparently can sustain chemosymbiotic fauna. The occurrence of fjords and by extension, highly reducing habitats, could have led to Arctic chemosymbiotic species being relatively generalist with their habitat, as opposed to being seep or vent specialists. Our stable isotope analyses indicate the incorporation of photosynthetically derived carbon in some individuals, which aligns with experiments conducted on frenulates before the discovery of chemosynthesis that demonstrated their ability to take up organic molecules from the surrounding sediment. Since reduced gases in non-seep environments are ultimately sourced from photosynthetic processes, we suggest that the extreme seasonality of the Arctic has resulted in Arctic chemosymbiotic animals seasonally changing their degree of reliance on chemosynthetic partners. Overall, the role of chemosynthesis in Arctic benthos and marine ecosystems and links to photosynthesis may be complex, and more extensive than currently known.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Sen, Arunima ; Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway ; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
Andersen, Liselotte W ; Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark ; Department of Ecoscience, Aarhus University, Aarhus, Denmark
Kjeldsen, Kasper U ; Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
Michel, Loïc ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Systématique et diversité animale ; Univ Brest, CNRS, Ifremer, UMR6197 BEEP (Biologie et Ecologie des Ecosystèmes Marins Profonds), Plouzané, France
Hong, Wei Li; Department of Geological Sciences, Stockholm University, Stockholm, Sweden
Choquet, Marvin ; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
Rasmussen, Tine L; Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), Department of Geosciences, The Arctic University of Norway, Tromsø, Norway
Language :
English
Title :
The phylogeography and ecology of Oligobrachia frenulate species suggest a generalist chemosynthesis-based fauna in the arctic.
Levin, L.A., Baco, A.R., Bowden, D.A., Colaco, A., Cordes, E.E., Cunha, M.R., Demopoulos, A.W.J., Gobin, J., Grupe, B.M., Le, J., Metaxas, A., Netburn, A.N., Rouse, G.W., Thurber, A.R., Tunnicliffe, V., Van Dover, C.L., Vanreusel, A., Watling, L., Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front. Mar. Sci., 3, 2016, 10.3389/fmars.2016.00072.
Duperron, S., Gaudron, S.M., Rodrigues, C.F., Cunha, M.R., Decker, C., Olu, K., An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. Biogeosciences 10 (2013), 3241–3267, 10.5194/bg-10-3241-2013.
Hügler, M., Petersen, J.M., Dubilier, N., Imhoff, J.F., Sievert, S.M., Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata. PLoS One, 6, 2011, e16018, 10.1371/journal.pone.0016018.
Suzuki, Y., Sasaki, T., Suzuki, M., Nogi, Y., Miwa, T., Takai, K., Nealson, K.H., Horikoshi, K., Novel chemoautotrophic endosymbiosis between a member of the epsilonproteobacteria and the hydrothermal-vent gastropod alviniconcha aff. Hessleri (gastropoda: provannidae) from the Indian ocean. Appl. Environ. Microbiol. 71 (2005), 5440–5450, 10.1128/AEM.71.9.5440-5450.2005.
Zbinden, M., Shillito, B., Le Bris, N., de Villardi de Montlaur, C., Roussel, E., Guyot, F., Gaill, F., Cambon-Bonavita, M.-A., New insigths on the metabolic diversity among the epibiotic microbial communitiy of the hydrothermal shrimp Rimicaris exoculata. J. Exp. Mar. Biol. Ecol. 359 (2008), 131–140, 10.1016/j.jembe.2008.03.009.
Bagarinao, T., Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 24 (1992), 21–62, 10.1016/0166-445X(92)90015-F.
Beauchamp, R.O. Jr., Bus, J.S., Popp, J.A., Boreiko, C.J., Andjelkovich, D.A., A critical review of the literature on hydrogen sulfide toxicity. Crit. Rev. Toxicol. 13 (1984), 25–97, 10.3109/10408448409029321.
Hance, J.M., Andrzejewski, J.E., Predmore, B.L., Dunlap, K.J., Misiak, K.L., Julian, D., Cytotoxicity from sulfide exposure in a sulfide-tolerant marine invertebrate. J. Exp. Mar. Biol. Ecol. 359 (2008), 102–109, 10.1016/j.jembe.2008.02.020.
Wang, F., Chapman, P.M., Biological implications of sulfide in sediment—a review focusing on sediment toxicity. Environ. Toxicol. Chem. 18 (1999), 2526–2532, 10.1002/etc.5620181120.
Sibuet, M., Olu, K., Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep Sea Res. Part II Top. Stud. Oceanogr. 45 (1998), 517–567, 10.1016/S0967-0645(97)00074-X.
Sibuet, M., Olu-Le Roy, K., Cold seep communities on continental margins: structure and quantitative distribution relative to geological and fluid venting patterns. Wefer, P.D.G., Billett, D.D., Hebbeln, D.D., Jørgensen, P.D.B.B., Schlüter, P.D.M., van Weering, D.T.C.E., (eds.) Ocean Margin Syst., 2002, Springer Berlin Heidelberg, 235–251, 10.1007/978-3-662-05127-6_15.
Holte, B., Oug, E., Dahle, S., Soft-bottom fauna and oxygen minima in sub-arctic north Norwegian marine sill basins. Mar. Biol. Res. 1 (2005), 85–96, 10.1080/17451000510019033.
Jordà Molina, È., Silberberger, M.J., Kokarev, V., Reiss, H., Environmental drivers of benthic community structure in a deep sub-arctic fjord system. Estuar. Coast Shelf Sci., 225, 2019, 106239, 10.1016/j.ecss.2019.05.021.
Syvitski, J.P.M., Burrell, D.C., Skei, J.M., Fjords: Processes and Products, Springer Science & Business Media. 2012.
Brattegard, T., Pogonophora and associated fauna in the deep basin of Sognefjorden. Sarsia 29 (1967), 299–306, 10.1080/00364827.1967.10411091.
Dufour, S.C., Gill anatomy and the evolution of symbiosis in the bivalve family thyasiridae. Biol. Bull. 208 (2005), 200–212, 10.2307/3593152.
George, J.D., Ecology of the pogonophore, Siboglinum fiordicum webb, in a shallow-water fjord community. Keegan, B.F., Ceidigh, P.O., Boaden, P.J.S., (eds.) Biol. Benthic Org., 1977, Pergamon, 261–275, 10.1016/B978-0-08-021378-1.50031-2.
Bakke, T., Development of Siboglinum fiordicum webb (pogonophora) after metamorphosis. Sarsia 63 (1977), 65–73, 10.1080/00364827.1977.10411323.
Bakke, T., The early embryos of Siboglinum fiordicumWebb (Pogonophora) reared in the laboratory. Sarsia 60 (1976), 1–12, 10.1080/00364827.1976.10411291.
Bakke, T., Settling of the larvae of Siboglinum fiordicum webb (pogonophora) in the laboratory. Sarsia 56 (1974), 57–70, 10.1080/00364827.1974.10411262.
Southward, A.J., Southward, E.C., Brattegard, T., Bakke, T., Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). J. Mar. Biol. Assoc. U. K. 59 (1979), 133–148, 10.1017/S0025315400046233.
Southward, A.J., Southward, E.C., Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Sarsia 45 (1970), 69–96, 10.1080/00364827.1970.10411184.
Pedersen, R.B., Rapp, H.T., Thorseth, I.H., Lilley, M.D., Barriga, F.J.A.S., Baumberger, T., Flesland, K., Fonseca, R., Früh-Green, G.L., Jorgensen, S.L., Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nat. Commun., 1, 2010, 126, 10.1038/ncomms1124.
Schander, C., Rapp, H.T., Kongsrud, J.A., Bakken, T., Berge, J., Cochrane, S., Oug, E., Byrkjedal, I., Todt, C., Cedhagen, T., Fosshagen, A., Gebruk, A., Larsen, K., Levin, L., Obst, M., Pleijel, F., Stöhr, S., Warén, A., Mikkelsen, N.T., Hadler-Jacobsen, S., Keuning, R., Petersen, K.H., Thorseth, I.H., Pedersen, R.B., The fauna of hydrothermal vents on the mohn ridge (north atlantic). Mar. Biol. Res. 6 (2010), 155–171, 10.1080/17451000903147450.
Sweetman, A.K., Levin, L.A., Rapp, H.T., Schander, C., Faunal trophic structure at hydrothermal vents on the southern Mohn's Ridge, Arctic Ocean. Mar. Ecol. Prog. Ser. 473 (2013), 115–131, 10.3354/meps10050.
Eilertsen, M.H., Georgieva, M.N., Kongsrud, J.A., Linse, K., Wiklund, H., Glover, A.G., Rapp, H.T., Genetic connectivity from the Arctic to the Antarctic: Sclerolinum contortum and Nicomache lokii (Annelida) are both widespread in reducing environments. Sci. Rep., 8, 2018, 4810, 10.1038/s41598-018-23076-0.
Georgieva, M.N., Wiklund, H., Bell, J.B., Eilertsen, M.H., Mills, R.A., Little, C.T.S., Glover, A.G., A chemosynthetic weed: the tubeworm Sclerolinum contortum is a bipolar, cosmopolitan species. BMC Evol. Biol., 15, 2015, 280, 10.1186/s12862-015-0559-y.
Smirnov, R.V., Two new species of Pogonophora from the arctic mud volcano off northwestern Norway. Sarsia 85 (2000), 141–150, 10.1080/00364827.2000.10414563.
Dando, P.R., Southward, A.J., Southward, E.C., Lamont, P., Harvey, R., Interactions between sediment chemistry and frenulate pogonophores (Annelida) in the north-east Atlantic. Deep-Sea Res. Part A Oceanogr. Res. Pap. 55 (2008), 966–996, 10.1016/j.dsr.2008.04.002.
Flügel, H.J., Callsen-Cencic, P., New observations on the biology of Siboglinum poseidoni flügel & langhof (pogonophora) from the skagerrak. Sarsia 77 (1992), 287–290, 10.1080/00364827.1992.10413513.
Flugel, H.J., Langhof, I., Pogonophora in the skagerrak. Sarsia 67 (1982), 211–212, 10.1080/00364827.1982.10420548.
Dando, P.R., Austen, M.C., Burke, R.A., Kendall, M.A., Kennicutt, M.C., II. Judd, A.G., Moore, D.C., O'Hara, S.C.M., Schmaljohann, R., Southward, A.J., Ecology of a North Sea Pockmark with an Active Methane Seep. 1991 http://agris.fao.org/agris-search/search.do?recordID=AV20120126231 accessed. (Accessed 30 September 2014)
Brattegard, T., A new species of multitentaculate pogonophora from northern Norway. Sarsia 22 (1966), 55–63, 10.1080/00364827.1966.10409562.
Smirnov, R.V., A revision of the Oligobrachiidae (Annelida: pogonophora), with notes on the morphology and distribution of Oligobrachia haakonmosbiensis Smirnov. Mar. Biol. Res. 10 (2014), 972–982, 10.1080/17451000.2013.872799.
Sen, A., Duperron, S., Hourdez, S., Piquet, B., Léger, N., Gebruk, A., Le Port, A.-S., Svenning, M.M., Andersen, A.C., Cryptic frenulates are the dominant chemosymbiotrophic fauna at Arctic and high latitude Atlantic cold seeps. PLoS One, 13, 2018, e0209273, 10.1371/journal.pone.0209273.
Vedenin, A.A., Kokarev, V.N., Chikina, M.V., Basin, A.B., Galkin, S.V., Gebruk, A.V., Fauna associated with shallow-water methane seeps in the Laptev Sea. PeerJ, 8, 2020, e9018, 10.7717/peerj.9018.
Lee, Y.M., Noh, H.-J., Lee, D.-H., Kim, J.-H., Jin, Y.K., Paull, C., Bacterial endosymbiont of Oligobrachia sp. (frenulata) from an active Mud Volcano in the Canadian Beaufort Sea. Polar Biol., 2019, 10.1007/s00300-019-02599-w.
Sen, A., Didriksen, A., Hourdez, S., Svenning, M.M., Rasmussen, T.L., Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol. Evol. n/a, 2020, 10.1002/ece3.5988.
Hilário, A., Capa, M., Dahlgren, T.G., Halanych, K.M., Little, C.T.S., Thornhill, D.J., Verna, C., Glover, A.G., New perspectives on the ecology and evolution of siboglinid tubeworms. PLoS One, 6, 2011, e16309, 10.1371/journal.pone.0016309.
Schmaljohann, R., Faber, E., Whiticar, M.J., Dando, P.R., Co-existence of methane-based and sulphur-based endosymbioses between bacteria and invertebrates at a site in the Skagerrak. Mar. Ecol. Prog. Ser. 61 (1990), 119–124.
Schmaljohann, R., Flügel, H.J., Methane-oxidizing bacteria in pogonophora. Sarsia 72 (1987), 91–98, 10.1080/00364827.1987.10419707.
Gebruk, A.V., Krylova, E.M., Lein, A.Y., Vinogradov, G.M., Anderson, E., Pimenov, N.V., Cherkashev, G.A., Crane, K., Methane seep community of the Håkon Mosby mud volcano (the Norwegian Sea): composition and trophic aspects. Sarsia 88 (2003), 394–403, 10.1080/00364820310003190.
Rybakova (Goroslavskaya, E., Galkin, S., Bergmann, M., Soltwedel, T., Gebruk, A., Density and distribution of megafauna at the Håkon Mosby mud volcano (the Barents Sea) based on image analysis. Biogeosciences 10 (2013), 3359–3374, 10.5194/bg-10-3359-2013.
Lösekann, T., Robador, A., Niemann, H., Knittel, K., Boetius, A., Dubilier, N., Endosymbioses between bacteria and deep-sea siboglinid tubeworms from an arctic cold seep (Haakon Mosby Mud Volcano, Barents Sea). Environ. Microbiol. 10 (2008), 3237–3254, 10.1111/j.1462-2920.2008.01712.x.
Pawlak, Z., Pawlak, A.S., Modification of iodometric determination of total and reactive sulfide in environmental samples. Talanta 48 (1999), 347–353, 10.1016/s0039-9140(98)00253-7.
Coplen, T.B., Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. RCM. 25 (2011), 2538–2560, 10.1002/rcm.5129.
Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3 (1994), 294–299.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 (2012), 539–542, 10.1093/sysbio/sys029.
Posada, D., jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25 (2008), 1253–1256, 10.1093/molbev/msn083.
Hong, W., Lepland, A., Himmler, T., Kim, J., Chand, S., Sahy, D., Solomon, E.A., Rae, J.W.B., Martma, T., Nam, S., Knies, J., Discharge of meteoric water in the eastern Norwegian sea since the last glacial period. Geophys. Res. Lett. 46 (2019), 8194–8204, 10.1029/2019GL084237.
Sen, A., Himmler, T., Hong, W.L., Chitkara, C., Lee, R.W., Ferré, B., Lepland, A., Knies, J., Atypical biological features of a new cold seep site on the Lofoten-Vesterålen continental margin (northern Norway). Sci. Rep., 9, 2019, 1762, 10.1038/s41598-018-38070-9.
Kennicutt, M.C., Burke, R.A., MacDonald, I.R., Brooks, J.M., Denoux, G.J., Macko, S.A., Stable isotope partitioning in seep and vent organisms: chemical and ecological significance. Chem. Geol. Isot. Geosci. Sect. 101 (1992), 293–310, 10.1016/0009-2541(92)90009-T.
Fisher, C.R., Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. Aquat. Sci. 2 (1990), 399–436.
Miglietta, M.P., Hourdez, S., Cowart, D.A., Schaeffer, S.W., Fisher, C., Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes. Deep Sea Res. Part II Top. Stud. Oceanogr. 57 (2010), 1916–1925, 10.1016/j.dsr2.2010.05.007.
Webb, M., Notes on the distribution of Pogonophora in Norwegian fjords. Sarsia 18 (1965), 11–15, 10.1080/00364827.1965.10409544.
Fisher, C.R., Toward an appreciation of hydrothennal-vent animals: their environment, physiological ecology, and tissue stable isotope values. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 91 (1995), 297–316, 10.1029/GM091p0297.
Savvichev, A.S., Kadnikov, V.V., Kravchishina, M.D., Galkin, S.V., Novigatskii, A.N., Sigalevich, P.A., Merkel, A.Yu, Ravin, N.V., Pimenov, N.V., Flint, M.V., Methane as an organic matter source and the trophic basis of a Laptev Sea cold seep microbial community. Geomicrobiol. J. 35 (2018), 411–423, 10.1080/01490451.2017.1382612.
Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U., Pfannkuche, O., A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407 (2000), 623–626, 10.1038/35036572.
Knittel, K., Boetius, A., Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63 (2009), 311–334, 10.1146/annurev.micro.61.080706.093130.
Ambrose, W.G. Jr., Panieri, G., Schneider, A., Plaza-Faverola, A., Carroll, M.L., Åström, E.K.L., Locke V, W.L., Carroll, J., Bivalve shell horizons in seafloor pockmarks of the last glacial-interglacial transition: a thousand years of methane emissions in the Arctic Ocean. G-cubed 16 (2015), 4108–4129, 10.1002/2015GC005980.
Åström, E.K.L., Sen, A., Carroll, M.L., Carroll, J., Cold seeps in a warming arctic: insights for benthic ecology. Front. Mar. Sci., 7, 2020, 244, 10.3389/fmars.2020.00244.
Åström, E.K.L., Oliver, P.G., Carroll, M.L., A new genus and two new species of Thyasiridae associated with methane seeps off Svalbard, Arctic Ocean. Mar. Biol. Res. 13 (2017), 402–416, 10.1080/17451000.2016.1272699.
Hansen, J., Ezat, M.M., Åström, E.K.L., Rasmussen, T.L., New late Pleistocene species of acharax from arctic methane seeps off svalbard. J. Syst. Palaeontol. 18 (2020), 197–212, 10.1080/14772019.2019.1594420.
Hansen, J., Hoff, U., Sztybor, K., Rasmussen, T.L., Taxonomy and palaeoecology of two Late Pleistocene species of vesicomyid bivalves from cold methane seeps at Svalbard (79°N). J. Molluscan Stud. 83 (2017), 270–279, 10.1093/mollus/eyx014.
Hryniewicz, K., Amano, K., Bitner, M., Hagström, J., Kiel, S., Klompmaker, A., Mörs, T., Robins, C., Kaim, A., A late Paleocene fauna from shallow-water chemosynthesis-based ecosystems. Spitsbergen, Svalbard, Acta Palaeontol. Pol., 64, 2019, 10.4202/app.00554.2018.
Åström, E.K.L., Bluhm, B.A., Rasmussen, T.L., Chemosynthetic and photosynthetic trophic support from cold seeps in Arctic benthic communities. Front. Mar. Sci., 9, 2022 https://www.frontiersin.org/articles/10.3389/fmars.2022.910558 accessed. (Accessed 20 December 2022)
Åström, E.K.L., Carroll, M.L., Jr, W.G.A., Carroll, J., Arctic cold seeps in marine methane hydrate environments: impacts on shelf macrobenthic community structure offshore Svalbard. Mar. Ecol. Prog. Ser. 552 (2016), 1–18, 10.3354/meps11773.
Hammer, Ø., Nakrem, H.A., Little, C.T.S., Hryniewicz, K., Sandy, M.R., Hurum, J.H., Druckenmiller, P., Knutsen, E.M., Høyberget, M., Hydrocarbon seeps from close to the jurassic–cretaceous boundary, svalbard. Palaeogeogr. Palaeoclimatol. Palaeoecol. 306 (2011), 15–26, 10.1016/j.palaeo.2011.03.019.
Hryniewicz, K., Bitner, M.A., Durska, E., Hagström, J., Hjálmarsdóttir, H.R., Jenkins, R.G., Little, C.T.S., Miyajima, Y., Nakrem, H.A., Kaim, A., Paleocene methane seep and wood-fall marine environments from Spitsbergen. Svalbard, Palaeogeogr. Palaeoclimatol. Palaeoecol. 462 (2016), 41–56, 10.1016/j.palaeo.2016.08.037.
Hryniewicz, K., Nakrem, H.A., Hammer, Ø., Little, C.T.S., Kaim, A., Sandy, M.R., Hurum, J.H., The palaeoecology of the latest Jurassic–earliest Cretaceous hydrocarbon seep carbonates from Spitsbergen. Svalbard, Lethaia. 48 (2015), 353–374, 10.1111/let.12112.
Hryniewicz, K., Hagström, J., Hammer, Ø., Kaim, A., Little, C.T.S., Nakrem, H.A., Late jurassic–early cretaceous hydrocarbon seep boulders from novaya zemlya and their faunas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 436 (2015), 231–244, 10.1016/j.palaeo.2015.06.036.
Batstone, R.T., Dufour, S.C., Closely related thyasirid bivalves associate with multiple symbiont phylotypes. Mar. Ecol. 37 (2016), 988–997, 10.1111/maec.12310.
Dufour, S.C., Felbeck, H., Symbiont abundance in thyasirids (Bivalvia) is related to particulate food and sulphide availability. Mar. Ecol. Prog. Ser. 320 (2006), 185–194.
Dando, P.R., Spiro, B., Varying nutritional dependence of the thyasirid bivalves Thyasira sarsi and T. equalis on chemoautotrophic symbiotic bacteria, demonstrated by isotope ratios of tissue carbon and shell carbonate. Mar. Ecol. Prog. Ser. 92 (1993), 151–158.
Kharlamenko, V.I., Kamenev, G.M., Kalachev, A.V., Kiyashko, S.I., Ivin, V.V., Thyasirid bivalves from the methane seep community off Paramushir Island (Sea of Okhotsk) and their nutrition. J. Molluscan Stud. 82 (2016), 391–402, 10.1093/mollus/eyw004.
Laurich, J.R., Batstone, R.T., Dufour, S.C., Temporal variation in chemoautotrophic symbiont abundance in the thyasirid bivalve Thyasira cf. gouldi. Mar. Biol. 162 (2015), 2017–2028, 10.1007/s00227-015-2727-4.
Rodrigues, C.F., Hilário, A., Cunha, M.R., Weightman, A.J., Webster, G., Microbial diversity in frenulata (siboglinidae, polychaeta) species from mud volcanoes in the Gulf of Cadiz (NE atlantic). Antonie Leeuwenhoek 100 (2011), 83–98, 10.1007/s10482-011-9567-0.
Ferré, B., Jansson, P.G., Moser, M., Serov, P., Portnov, A., Graves, C.A., Panieri, G., Gründger, F., Berndt, C., Lehmann, M.F., Niemann, H., Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 13 (2020), 144–148, 10.1038/s41561-019-0515-3.
Hong, W.-L., Torres, M.E., Carroll, J., Crémière, A., Panieri, G., Yao, H., Serov, P., Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming. Nat. Commun., 8, 2017, 15745, 10.1038/ncomms15745.
El bani Altuna, N., Rasmussen, T.L., Ezat, M.M., Vadakkepuliyambatta, S., Groeneveld, J., Greaves, M., Deglacial bottom water warming intensified Arctic methane seepage in the NW Barents Sea. Commun. Earth Environ. 2 (2021), 1–9, 10.1038/s43247-021-00264-x.
Gründger, F., Probandt, D., Knittel, K., Carrier, V., Kalenitchenko, D., Silyakova, A., Serov, P., Ferré, B., Svenning, M.M., Niemann, H., Seasonal shifts of microbial methane oxidation in Arctic shelf waters above gas seeps. Limnol. Oceanogr. 66 (2021), 1896–1914, 10.1002/lno.11731.
Berge, J., Renaud, P.E., Darnis, G., Cottier, F., Last, K., Gabrielsen, T.M., Johnsen, G., Seuthe, L., Weslawski, J.M., Leu, E., Moline, M., Nahrgang, J., Søreide, J.E., Varpe, Ø., Lønne, O.J., Daase, M., Falk-Petersen, S., In the dark: a review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 139 (2015), 258–271, 10.1016/j.pocean.2015.08.005.
Vader, A., Marquardt, M., Meshram, A.R., Gabrielsen, T.M., Key Arctic phototrophs are widespread in the polar night. Polar Biol. 38 (2015), 13–21, 10.1007/s00300-014-1570-2.