[en] Out-of-plane polar domain structures have recently been discovered in strained and twisted bilayers of inversion symmetry broken systems such as hexagonal boron nitride. Here we show that this symmetry breaking also gives rise to an in-plane component of polarization, and the form of the total polarization is determined purely from symmetry considerations. The in-plane component of the polarization makes the polar domains in strained and twisted bilayers topologically non-trivial, forming a network of merons and antimerons (half-skyrmions and half-antiskyrmions). For twisted systems, the merons are of Bloch type whereas for strained systems they are of Néel type. We propose that the polar domains in strained or twisted bilayers may serve as a platform for exploring topological physics in layered materials and discuss how control over topological phases and phase transitions may be achieved in such systems.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Physics
Author, co-author :
Bennett, Daniel ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux ; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK. dbennett@seas.harvard.edu ; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA. dbennett@seas.harvard.edu
Chaudhary, Gaurav; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
Slager, Robert-Jan ; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
Bousquet, Eric ; Université de Liège - ULiège > Département de physique
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Polar meron-antimeron networks in strained and twisted bilayers.
Publication date :
24 March 2023
Journal title :
Nature Communications
eISSN :
2041-1723
Publisher :
Springer Science and Business Media LLC, England
Volume :
14
Issue :
1
Pages :
1629
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
EPSRC - Engineering and Physical Sciences Research Council ULiège - University of Liège EOS - The Excellence Of Science Program University of Cambridge
Funding number :
“ShapeME” - EOS reference number: 40007525
Funding text :
D.B. acknowledges funding from the University of Liége under special
funds for research (IPD-STEMA fellowship program) and St. John’s College,
University of Cambridge. R.-J.S. and G.C. acknowledge funding
from a New Investigator Award, EPSRC grant EP/W00187X/1. R.-J.S. also
acknowledges funding from Trinity College, University of Cambridge.
E.B. acknowledges the FNRS and the Excellence of Science program
(EOS “ShapeME”, No. 40007525) funded by the FWO and F.R.S.-FNRS.
Ph.G. acknowledges financial support from F.R.S.-FNRS Belgium (grant
PROMOSPAN) and the European Union’s Horizon 2020 research and
innovation program under grant agreement number 964931 (TSAR). The
authors acknowledge the CECI supercomputer facilities funded by the
F.R.S-FNRS (Grant No. 2.5020.1) and the Tier-1 supercomputer of the
Fédération Wallonie-Bruxelles funded by theWalloon Region (Grant No.
1117545).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).
Bennett, D. & Remez, B. On electrically tunable stacking domains and ferroelectricity in moiré superlattices. npj 2D Mater. Appl. 6, 1–6 (2022).
Bennett, D. Theory of polar domains in moiré heterostructures. Phys. Rev. B 105, 235445 (2022).
Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462 (2021).
Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458 (2021).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43 (2018).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80 (2018).
Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71 (2020).
Woods, C. et al. Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun. 12, 1–7 (2021).
King-Smith, R. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651 (1993).
Bristowe, N., Stengel, M., Littlewood, P., Artacho, E. & Pruneda, J. One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators. Phys. Rev. B 88, 161411 (2013).
Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368 (2019).
Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63 (2022).
Wang, Y. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881 (2020).
Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).
Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).
Lu, X. et al. Multiple flat bands and topological Hofstadter butterfly in twisted bilayer graphene close to the second magic angle. Proc. Natl Acad. Sci. USA 118, e2100006118 (2021).
Lian, B., Liu, Z., Zhang, Y. & Wang, J. Flat Chern band from twisted bilayer MnBi2 Te4. Phys. Rev. Lett. 124, 126402 (2020).
Can, O. et al. High-temperature topological superconductivity in twisted double-layer copper oxides. Nat. Phys. 17, 519 (2021).
Engelke, R. et al. Non-abelian topological defects and strain mapping in 2d moiré materials. arXiv:2207.05276 (2022).
Guerci, D., Wang, J., Pixley, J. & Cano, J. Designer meron lattice on the surface of a topological insulator. Phys. Rev. B 106, 245417 (2022).
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).
Gonze, X. et al. Abinit: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582 (2009).
Carr, S. et al. Relaxation and domain formation in incommensurate two-dimensional heterostructures. Phys. Rev. B 98, 224102 (2018).
Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: the case of ABO3 compounds. Phys. Rev. B 58, 6224 (1998).
Urban, J. J., Yun, W. S., Gu, Q. & Park, H. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).
Yun, W. S., Urban, J. J., Gu, Q. & Park, H. Ferroelectric properties of individual barium titanate nanowires investigated by scanned probe microscopy. Nano Lett. 2, 447 (2002).
Luo, Y. et al. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Appl. Phys. Lett. 83, 440 (2003).
Mao, Y., Banerjee, S. & Wong, S. S. Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 9, 408–409 (2003).
Artyukhov, V. I., Gupta, S., Kutana, A. & Yakobson, B. I. Flexoelectricity and charge separation in carbon nanotubes. Nano Lett. 20, 3240 (2020).
Springolo, M., Royo, M. & Stengel, M. Direct and converse flexoelectricity in two-dimensional materials. Phys. Rev. Lett. 127, 216801 (2021).
Bennett, D. Flexoelectric-like radial polarization of single-walled nanotubes from first-principles. Electron. Struct. 3, 015001 (2021).
Chu, M.-W. et al. Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat. Mater. 3, 87 (2004).
Shin, H.-J. et al. Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask. Appl. Phys. Lett. 87, 113114 (2005).
Fu, H. & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003).
Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).
Geneste, G., Bousquet, E., Junquera, J. & Ghosez, P. Finite-size effects in BaTiO3 nanowires. Appl. Phys. Lett. 88, 112906 (2006).
Morozovska, A. N., Eliseev, E. A. & Glinchuk, M. D. Ferroelectricity enhancement in confined nanorods: direct variational method. Phys. Rev. B 73, 214106 (2006).
Hong, J., Catalan, G., Fang, D., Artacho, E. & Scott, J. Topology of the polarization field in ferroelectric nanowires from first principles. Phys. Rev. B 81, 172101 (2010).
Nahas, Y. et al. Discovery of stable skyrmionic state in ferroelectric nanocomposites. Nat. Commun. 6, 1 (2015).
Pereira Gonçalves, M. A., Escorihuela-Sayalero, C., Garca-Fernández, P., Junquera, J. & Íñiguez, J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. The space group classification of topological band-insulators. Nat. Phys. 9, 98 (2013).
Bernevig, B. A. In Topological Insulators and Topological Superconductors (Princeton University Press, 2013).
Bouhon, A., Bzdušek, T. & Slager, R.-J. Geometric approach to fragile topology beyond symmetry indicators. Phys. Rev. B 102, 115135 (2020).
Ünal, F. N., Bouhon, A. & Slager, R.-J. Topological Euler class as a dynamical observable in optical lattices. Phys. Rev. Lett. 125, 053601 (2020).
García, A., Verstraete, M. J., Pouillon, Y. & Junquera, J. The psml format and library for norm-conserving pseudopotential data curation and interoperability. Comput. Phys. Commun. 227, 51 (2018).
Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Van Setten, M. et al. The pseudodojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39 (2018).
Corsetti, F., Fernández-Serra, M., Soler, J. M. & Artacho, E. Optimal finite-range atomic basis sets for liquid water and ice. J. Phys. Condens. Matter 25, 435504 (2013).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
Zhang, Y. & Yang, W. Comment on “generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890 (1998).
Dion, M., Rydberg, H., Schröder, E., Langreth, D. & Lundqvist, B. Erratum: van der Waals density functional for general geometries [physical review letters 92, 246401 (2004)]. Phys. Rev. Lett. 95, 109902 (2005).
Cooper, V. R. Van der Waals density functional: an appropriate exchange functional. Phys. Rev. B 81, 161104 (2010).
Becke, A. D. & Johnson, E. R. A simple effective potential for exchange. J. Chem. Phys. 124, 221101 (2006).
Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111). Phys. Rev. B 46, 16067 (1992).
Bengtsson, L. Dipole correction for surface supercell calculations. Phys. Rev. B 59, 12301 (1999).
Berg, B. & Lüscher, M. Definition and statistical distributions of a topological number in the lattice O(3)σ-model. Nucl. Phys. B 190, 412 (1981).
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.