Geophysics; Geochemistry and Petrology; Earth and Planetary Sciences (miscellaneous); Space and Planetary Science; astro-ph.EP; Physics - Space Physics
Abstract :
[en] Reflected sunlight observations from the Ultraviolet Spectrograph (UVS) on the Juno spacecraft were used to study the distribution of acetylene (C2H2) at Jupiter's south pole. We find that the shape of the C2H2 absorption feature varies significantly across the polar region, and this can be used to infer spatial variability in the C2H2 abundance. There is a localized region of enhanced C2H2 absorption which coincides with the location of Jupiter's southern polar aurora; the C2H2 abundance poleward of the auroral oval is a factor of 3 higher than adjacent quiescent, non-auroral longitudes. This builds on previous infrared studies, which found enhanced C2H2 abundances within the northern auroral oval. This suggests that Jupiter's upper-atmosphere chemistry is being strongly influenced by the influx of charged auroral particles and demonstrates the necessity of developing ion-neutral photochemical models of Jupiter's polar regions.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Giles, Rohini S. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Hue, Vincent ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States ; Aix-Marseille Université, CNRS, CNES, Institut Origines, LAM, Marseille, France
Greathouse, Thomas K. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Gladstone, G. Randall ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States ; Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, United States
Kammer, Joshua A. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Versteeg, Maarten H. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophysique, géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Sinclair, James A. ; Jet Propulsion Laboratory, Pasadena, United States
Bolton, Scott J. ; Space Science and Engineering Division, Southwest Research Institute, San Antonio, United States
Levin, Steven M. ; Jet Propulsion Laboratory, Pasadena, United States
Language :
English
Title :
Enhanced C2H2 Absorption Within Jupiter's Southern Auroral Oval From Juno UVS Observations
NASA - National Aeronautics and Space Administration F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The authors are grateful to the NASA and contributing institutions, which have made the Juno mission possible. This work was funded by the NASA's New Frontiers Program for Juno via contract with the Southwest Research Institute. BB is a Research Associate of the Fonds de la Recherche Scientifique – FNRS.The authors are grateful to the NASA and contributing institutions, which have made the Juno mission possible. This work was funded by the NASA's New Frontiers Program for Juno via contract with the Southwest Research Institute. BB is a Research Associate of the Fonds de la Recherche Scientifique – FNRS.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., et al. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Grodent, D., Gérard, J.-C., Stallard, T., Clarke, J. T., Yoneda, M., et al. (2012). Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophysical Research Letters, 39(1), L01105. https://doi.org/10.1029/2011gl050253
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., et al. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122(8), 7985–7996. https://doi.org/10.1002/2017ja024370
Caldwell, J., Tokunaga, A. T., & Gillett, F. C. (1980). Possible infrared aurorae on Jupiter. Icarus, 44(3), 667–675. https://doi.org/10.1016/0019-1035(80)90135-9
Cavalié, T., Benmahi, B., Hue, V., Moreno, R., Lellouch, E., Fouchet, T., et al. (2021). First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter. Astronomy and Astrophysics, 647, L8. https://doi.org/10.1051/0004-6361/202140330
Chaufray, J.-Y., Greathouse, T. K., Gladstone, G. R., Waite, J. H., Maillard, J.-P., Majeed, T., et al. (2011). Spectro-imaging observations of Jupiter’s 2 μm auroral emission. II: Thermospheric winds. Icarus, 211(2), 1233–1241. https://doi.org/10.1016/j.icarus.2010.11.021
De La Haye, V., Waite, J. H., Jr., Cravens, T. E., Robertson, I. P., & Lebonnois, S. (2008). Coupled ion and neutral rotating model of Titan’s upper atmosphere. Icarus, 197(1), 110–136. https://doi.org/10.1016/j.icarus.2008.03.022
Dobrijevic, M., Loison, J. C., Hickson, K. M., & Gronoff, G. (2016). 1D-coupled photochemical model of neutrals, cations and anions in the atmosphere of Titan. Icarus, 268, 313–339. https://doi.org/10.1016/j.icarus.2015.12.045
Drossart, P., Bézard, B., Atreya, S. K., Bishop, J., Waite, J., Jr., & Boice, D. (1993). Thermal profiles in the auroral regions of Jupiter. Journal of Geophysical Research, 98(E10), 18803–18811. https://doi.org/10.1029/93je01801
Drossart, P., Bézard, B., Atreya, S. K., Lacy, J., Serabyn, E., Tokunaga, A., & Encrenaz, T. (1986). Enhanced acetylene emission near the north pole of Jupiter. Icarus, 66(3), 610–618. https://doi.org/10.1016/0019-1035(86)90094-1
Fletcher, L. N., Greathouse, T. K., Orton, G. S., Sinclair, J. A., Giles, R. S., Irwin, P. G. J., & Encrenaz, T. (2016). Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128–161. https://doi.org/10.1016/j.icarus.2016.06.008
Giles, R. S. (2023). Enhanced C2H2 absorption within Jupiter’s southern auroral oval from Juno UVS observations. Mendeley Data, V1. https://doi.org/10.17632/ttyx24ykcx.1
Giles, R. S., Greathouse, T. K., Hue, V., Gladstone, G. R., Melin, H., Fletcher, L. N., et al. (2021). Meridional variations of C2H2 in Jupiter’s stratosphere from Juno UVS observations. Journal of Geophysical Research: Planets, 126(8), e2021JE006928. https://doi.org/10.1029/2021je006928
Gladstone, G. R., Allen, M., & Yung, Y. L. (1996). Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus, 119(1), 1–52. https://doi.org/10.1006/icar.1996.0001
Gladstone, G. R., Greathouse, T. K., Versteeg, M. H., Hue, V., Kammer, J. A., Davis, M. W., et al. (2019). Recent Juno-UVS observations of Jupiter’s auroras. In EPSC/DPS Joint Meeting Abstracts (Vol. 13).
Gladstone, G. R., Persyn, S. C., Eterno, J. S., Walther, B. C., Slater, D. C., Davis, M. W., et al. (2017). The ultraviolet spectrograph on NASA’s Juno mission. Space Science Reviews, 213(1–4), 447–473. https://doi.org/10.1007/s11214-014-0040-z
Grasset, O., Dougherty, M. K., Coustenis, A., Bunce, E. J., Erd, C., Titov, D., et al. (2013). JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system. Planetary and Space Science, 78, 1–21. https://doi.org/10.1016/j.pss.2012.12.002
Greathouse, T. K., Gladstone, G. R., Davis, M. W., Slater, D. C., Versteeg, M. H., Persson, K. B., et al. (2013). Performance results from in-flight commissioning of the Juno ultraviolet spectrograph (Juno-UVS). In UV, X-ray, and gamma-ray space instrumentation for astronomy XVIII (Vol. 8859, p. 88590T).
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Hue, V., Giles, R. S., Gladstone, G. R., Greathouse, T. K., Davis, M. W., Kammer, J. A., & Versteeg, M. H. (2021). Updated radiometric and wavelength calibration of the Juno ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 7(4), 044003. https://doi.org/10.1117/1.jatis.7.4.044003
Hue, V., Gladstone, G. R., Greathouse, T. K., Kammer, J. A., Davis, M. W., Bonfond, B., et al. (2019). In-flight characterization and calibration of the Juno-ultraviolet spectrograph (Juno-UVS). The Astronomical Journal, 157(2), 90. https://doi.org/10.3847/1538-3881/aafb36
Hue, V., Hersant, F., Cavalié, T., Dobrijevic, M., & Sinclair, J. (2018). Photochemistry, mixing and transport in Jupiter’s stratosphere constrained by Cassini. Icarus, 307, 106–123. https://doi.org/10.1016/j.icarus.2018.02.018
Irwin, P. G. J. (2020). NEMESIS/Radtrancode software (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.4303976
Irwin, P. G. J., Teanby, N. A., de Kok, R., Fletcher, L. N., Howett, C. J. A., Tsang, C. C. C., et al. (2008). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 109(6), 1136–1150. https://doi.org/10.1016/j.jqsrt.2007.11.006
Kammer, J. A., Hue, V., Greathouse, T. K., Gladstone, G. R., Davis, M. W., & Versteeg, M. H. (2019). Planning operations in Jupiter’s high-radiation environment: Optimization strategies from Juno-ultraviolet spectrograph. Journal of Astronomical Telescopes, Instruments, and Systems, 5(2), 027001. https://doi.org/10.1117/1.jatis.5.2.027001
Keller-Rudek, H., Moortgat, G. K., Sander, R., & Sörensen, R. (2013). The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth System Science Data, 5(2), 365–373. https://doi.org/10.5194/essd-5-365-2013
Kim, S. J., Caldwell, J., Rivolo, A. R., Wagener, R., & Orton, G. S. (1985). Infrared polar brightening on Jupiter: III. Spectrometry from the Voyager 1 IRIS experiment. Icarus, 64(2), 233–248. https://doi.org/10.1016/0019-1035(85)90088-0
Kim, Y. H., & Fox, J. L. (1994). The chemistry of hydrocarbon ions in the Jovian ionosphere. Icarus, 112(2), 310–325. https://doi.org/10.1006/icar.1994.1186
Loison, J. C., Hébrard, E., Dobrijevic, M., Hickson, K. M., Caralp, F., Hue, V., et al. (2015). The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan. Icarus, 247, 218–247. https://doi.org/10.1016/j.icarus.2014.09.039
Melin, H., Fletcher, L. N., Donnelly, P. T., Greathouse, T. K., Lacy, J. H., Orton, G. S., et al. (2018). Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter. Icarus, 305(1), 301–313. https://doi.org/10.1016/j.icarus.2017.12.041
Melin, H., Fletcher, L. N., Irwin, P. G. J., & Edgington, S. G. (2020). Jupiter in the ultraviolet: Acetylene and ethane abundances in the stratosphere of Jupiter from Cassini observations between 0.15 and 0.19 μm. The Astronomical Journal, 159(6), 291. https://doi.org/10.3847/1538-3881/ab91a6
Moses, J. I., Fouchet, T., Bézard, B., Gladstone, G. R., Lellouch, E., & Feuchtgruber, H. (2005). Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 110(E8), E08001. https://doi.org/10.1029/2005je002411
Nichols, J. D., Badman, S. V., Bagenal, F., Bolton, S. J., Bonfond, B., Bunce, E. J., et al. (2017). Response of Jupiter’s auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 44(15), 7643–7652. https://doi.org/10.1002/2017gl073029
Nixon, C. A., Achterberg, R. K., Conrath, B. J., Irwin, P. G. J., Teanby, N. A., Fouchet, T., et al. (2007). Meridional variations of C2H2 and C2H6 in Jupiter’s atmosphere from Cassini CIRS infrared spectra. Icarus, 188(1), 47–71. https://doi.org/10.1016/j.icarus.2006.11.016
O’Donoghue, J., Moore, L., Bhakyapaibul, T., Melin, H., Stallard, T., Connerney, J., & Tao, C. (2021). Global upper-atmospheric heating on Jupiter by the polar aurorae. Nature, 596(7870), 54–57. https://doi.org/10.1038/s41586-021-03706-w
Rego, D., Achilleos, N., Stallard, T., Miller, S., Prangé, R., Dougherty, M., & Joseph, R. D. (1999). Supersonic winds in Jupiter’s aurorae. Nature, 399(6732), 121–124. https://doi.org/10.1038/20121
Sinclair, J. A., Moses, J. I., Hue, V., Greathouse, T. K., Orton, G. S., Fletcher, L. N., & Irwin, P. G. J. (2019). Jupiter’s auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2 and C6H6 from Voyager-IRIS and Cassini-CIRS. Icarus, 328, 176–193. https://doi.org/10.1016/j.icarus.2019.03.012
Sinclair, J. A., Orton, G. S., Greathouse, T. K., Fletcher, L. N., Moses, J. I., Hue, V., & Irwin, P. G. J. (2017). Jupiter’s auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and Cassini-CIRS spectra. Icarus, 292, 182–207. https://doi.org/10.1016/j.icarus.2016.12.033
Sinclair, J. A., Orton, G. S., Greathouse, T. K., Fletcher, L. N., Moses, J. I., Hue, V., & Irwin, P. G. J. (2018). Jupiter’s auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra measured in December 2014. Icarus, 300, 305–326. https://doi.org/10.1016/j.icarus.2017.09.016
Trantham, B. (2014). Juno Jupiter UVS calibrated data archive V1.0. PDS Atmospheres (ATM) Node. https://doi.org/10.17189/c32j-7r56
Waite, J. H., Cravens, T. E., Kozyra, J., Nagy, A. F., Atreya, S. K., & Chen, R. H. (1983). Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere. Journal of Geophysical Research, 88(A8), 6143–6163. https://doi.org/10.1029/ja088ia08p06143
West, R. A., Baines, K. H., Friedson, A. J., Banfield, D., Ragent, B., & Taylor, F. W. (2004). Jovian clouds and haze. In Jupiter: The planet, satellites and magnetosphere (pp. 79–104). Cambridge University Press.
Wong, A.-S., Yung, Y. L., & Friedson, A. J. (2003). Benzene and haze formation in the polar atmosphere of Jupiter. Geophysical Research Letters, 30(8), 1447. https://doi.org/10.1029/2002gl016661
Woods, T. N., Chamberlin, P. C., Harder, J. W., Hock, R. A., Snow, M., Eparvier, F. G., et al. (2009). Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophysical Research Letters, 36(1), L01101. https://doi.org/10.1029/2008gl036373
Yao, Z. H., Bonfond, B., Grodent, D., Chané, E., Dunn, W. R., Kurth, W. S., et al. (2022). On the relation between auroral morphologies and compression conditions of Jupiter’s magnetopause: Observations from Juno and the Hubble Space Telescope. Journal of Geophysical Research: Space Physics, 127(10), e2021JA029894. https://doi.org/10.1029/2021ja029894
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.