Water Science and Technology; Aquatic Science; Geography, Planning and Development; Biochemistry
Abstract :
[en] Multi-effect distillation with thermal vapor compression (MED-TVC) is a highly energy-efficient desalination technology that can provide a reliable and sustainable source of high-quality water, particularly in areas with limited energy infrastructure and water resources. In this study, a numerical model based on exergoeconomic approach is developed to analyze the economic performance of a MED-TVC system for seawater desalination. A parallel/cross feed configuration is considered because of its high energy efficiency. In addition, a parametric study is performed to evaluate the effects of some operational parameters on the total water price, such as the top brine temperature, seawater temperature, motive steam flow rate, and number of effects. The obtained results indicate that the total water price is in the range of 1.73 USD/m3 for a distilled water production of 55.20 kg/s. Furthermore, the exergy destructions in the effects account for 45.8% of the total exergy destruction. The MED effects are also identified to be the most relevant component from an exergoeconomic viewpoint. Careful attention should be paid to these components. Of the total cost associated with the effects, 75.1% is due to its high thermodynamic inefficiency. Finally, the parametric study indicates that adjusting the top brine temperature, the cooling seawater temperature, the motive steam flow rate, and the number of effects has a significant impact on the TWP, which varies between 1.42 USD/m3 and 2.85 USD/m3.
Disciplines :
Chemistry
Author, co-author :
Fergani, Zineb; Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
Triki, Zakaria ; Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
Menasri, Rabah; Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria
Tahraoui, Hichem ; Laboratory of Biomaterials and Transport Phenomena, University of Medea, Medea 26000, Algeria ; Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
Kebir, Mohammed ; Research Unit on Analysis and Technological Development in Environment (URADTE CRAPC), BP 384, Bou-Ismail, Tipaza 42000, Algeria
Amrane, Abdeltif ; Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, F-35000 Rennes, France
Moula, Nassim ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Méthodes expérimentales des animaux de laboratoire et éthique en expérimentation animale
Zhang, Jie ; School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
Mouni, Lotfi ; Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Akli Mohand Oulhadj University, Bouira 10000, Algeria
Language :
English
Title :
Analysis of Desalination Performance with a Thermal Vapor Compression System
Elsayed M.L. Mesalhy O. Mohammed R.H. Chow L.C. Transient and thermo-economic analysis of MED-MVC desalination system Energy 2019 16 283 296 10.1016/j.energy.2018.10.145
Macedonio F. Drioli E. An exergetic analysis of a membrane desalination system Desalination 2010 261 293 299 10.1016/j.desal.2010.06.070
Fitzsimons L. Corcoran B. Young P. Foley G. Exergy analysis of water purification and desalination: A study of exergy model approaches Desalination 2015 359 212 224 10.1016/j.desal.2014.12.033
Miladi R. Frikha N. Gabsi S. Exergy analysis of a solar-powered vacuum membrane distillation unit using two models Energy 2017 120 872 883 10.1016/j.energy.2016.11.133
Askari I.B. Ameri M. Calise F. Energy, exergy and exergo-economic analysis of different water desalination technologies powered by Linear Fresnel solar field Desalination 2018 425 37 67 10.1016/j.desal.2017.10.008
Triki Z. Fergani Z. Bouaziz M.N. Exergoeconomic and exergoenvironmental evaluation of a solar-energy-integrated vacuum membrane distillation system for seawater desalination Desalin. Water Treat. 2021 225 380 391 10.5004/dwt.2021.27144
Mistry K.H. Antar M.A. Lienhard V.J.H. An improved model for multiple effect distillation Deasalin. Water Treat. 2013 51 807 821 10.1080/19443994.2012.703383
Ophir A. Lokiec F. Advanced MED process for most economical sea water desalination Desalination 2005 182 187 198 10.1016/j.desal.2005.02.026
Elsayed M.L. Mesalhy O. Mohammed R.H. Chow L.C. Exergy and thermo-economic analysis for MED-TVC desalination systems Desalination 2018 447 29 42 10.1016/j.desal.2018.06.008
Hamed O.A. Zamamiri A.M. Aly S. Lior N. Thermal performance and exergy analysis of a thermal vapour compression desalination system Energy Convers. Manag. 1996 37 379 387 10.1016/0196-8904(95)00194-8
Al-Najem N.M. Darwish M.A. Youssef F.A. Thermovapor compression desalters: Energy and availability—Analysis of single-and multi-effect systems Desalination 1997 110 223 238 10.1016/S0011-9164(97)00101-X
Alasfour F.N. Darwish M.A. Amer A.B. Thermal analysis of ME—TVC+MEE desalination systems Desalination 2005 174 39 61 10.1016/j.desal.2004.08.039
Choi H.S. Lee T.J. Kim Y.G. Song S.L. Performance improvement of multiple-effect distiller with thermal vapour compression system by exergy analysis Desalination 2005 182 239 249 10.1016/j.desal.2005.03.018
Cao C. Xie L. Xu S. Du Y. Exergy analysis and optimization of MED–TVC system with different effect group divisions Desalination 2021 500 114891 10.1016/j.desal.2020.114891
Binamer A. Second law and sensitivity analysis of large ME-TVC desalination units Desalin. Water Treat. 2015 53 1234 1245 10.1080/19443994.2013.852481
Sadri S. HaghighiKhoshkhoo R. Ameri M. Multi objective optimization of the MED-TVC system with exergetic and heat transfer analysis Energy Equip. System. 2017 5 419 430
Menasri R. Triki Z. Bouaziz M.N. Hamrouni B. Energy and exergy analyses of a novel multi-effect distillation system with thermal vapour compression for seawater desalination Desalin. Water Treat. 2022 246 54 67 10.5004/dwt.2022.27992
Samaké O. Galanis N. Sorin M. Thermo-economic analysis of a multiple-effect desalination system with ejector vapour compression Energy 2018 144 1037 1051 10.1016/j.energy.2017.12.112
Javadi M.A. Khalaji M. Ghasemiasl R. Exergoeconomic and environmental analysis of a combined power and water desalination plant with parabolic solar collector Desalin. Water Treat. 2020 193 212 223 10.5004/dwt.2020.25800
Hemmatpour K. Ghasemiasl R. Javadi M.A. Time-Transient Optimization of Electricity and Fresh Water Cogeneration Cycle Using Gas Fuel and Solar Energy Mathematics 2023 11 571 10.3390/math11030571
Javadi M.A. Khodabakhshi S. Ghasemiasl R. Jabery R. Sensivity analysis of a multi-generation system based on a gas/hydrogen-fueled gas turbine for producing hydrogen, electricity and fresh water Energy Convers. Manag. 2022 252 115085 10.1016/j.enconman.2021.115085
Ghasemiasl R. Javadi M.A. Nezamabadi M. Sharifpur M. Exergetic and economic optimization of a solar-based cogeneration system applicable for desalination and power production J. Therm. Anal. Calorim. 2021 145 993 1003 10.1007/s10973-020-10242-8
Sharqawy M.H. Lienhard J.H. Zubair S.M. Thermophysical properties of seawater: A review of existing correlations and data Desalin. Water Treat. 2010 16 354 380 10.5004/dwt.2010.1079
Abusoglu A. Kanoglu M. Exergoeconomic analysis and optimization of combined heat and power production: A review Renew. Sust. Energ. Rev. 2009 13 2295 2308 10.1016/j.rser.2009.05.004
Lazzaretto A. Tsatsaronis G. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems Energy 2006 31 1257 1289 10.1016/j.energy.2005.03.011
Mohammadkhani F. Khalilarya S. Mirzaee I. Exergy and exergoeconomic analysis and optimization of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm Int. J. Exergy 2013 12 139 161 10.1504/IJEX.2013.053387
Habibi H. Zoghi M. Chitsaz A. Shamsaiee M. Thermo-economic performance evaluation and multi-objective optimization of a screw expander-based cascade Rankine cycle integrated with parabolic trough solar collector Appl. Therm. Eng. 2020 180 115827 10.1016/j.applthermaleng.2020.115827
Jenkins S. Chemical Engineering Plant Cost Index Annual Average 2020 Available online: http://www.chemengonline.com/pci-home (accessed on 18 April 2022)
Mohammed R.H. Ibrahim M.M. Abu-Heiba A. Exergoeconomic and multi-objective optimization analyses of an organic Rankine cycle integrated with multi-effect desalination for electricity, cooling, heating power, and fresh water production Energy Convers. Manag. 2021 231 113826 10.1016/j.enconman.2021.113826
Bejan A. Tsatsaronis G. Moran M.J. Thermal Design and Optimization John Wiley & Sons Hoboken, NJ, USA 1996