[en] Prokaryotic genomes are often considered to be mosaics of genes that do not necessarily share the same evolutionary history due to widespread Horizontal Gene Transfers (HGTs). Consequently, representing evolutionary relationships of prokaryotes as bifurcating trees has long been controversial. However, studies reporting conflicts among gene trees derived from phylogenomic datasets have shown that these conflicts can be the result of artifacts or evolutionary processes other than HGT, such as incomplete lineage sorting, low phylogenetic signal, and systematic errors due to substitution model misspecification. Here, we present the results of an extensive exploration of phylogenetic conflicts in the cyanobacterial order Nostocales, for which previous studies have inferred strongly supported conflicting relationships when using different concatenated phylogenomic datasets. We found that most of these conflicts are concentrated in deep clusters of short internodes of the Nostocales phylogeny, where the great majority of individual genes have low resolving power. We then inferred phylogenetic networks to detect HGT events while also accounting for incomplete lineage sorting. Our results indicate that most conflicts among gene trees are likely due to incomplete lineage sorting linked to an ancient rapid radiation, rather than to HGTs. Moreover, the short internodes of this radiation fit the expectations of the anomaly zone, i.e., a region of the tree parameter space where a species tree is discordant with its most likely gene tree. We demonstrated that concatenation of different sets of loci can recover up to 17 distinct and well-supported relationships within the putative anomaly zone of Nostocales, corresponding to the observed conflicts among well-supported trees based on concatenated datasets from previous studies. Our findings highlight the important role of rapid radiations as a potential cause of strongly conflicting phylogenetic relationships when using phylogenomic datasets of bacteria. We propose that polytomies may be the most appropriate phylogenetic representation of these rapid radiations that are part of anomaly zones, especially when all possible genomic markers have been considered to infer these phylogenies.
Disciplines :
Microbiology
Author, co-author :
Pardo-De la Hoz, Carlos J. ; Department of Biology, Duke University, Durham, North Carolina, 27708, United States of America
Magain, Nicolas ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS)
Piatkowski, Bryan ; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, United States of America
Cornet, Luc ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes ; BCCM/IHEM, Mycology and Aerobiology, Sciensano, Brussels, Belgium
Dal Forno, Manuela; Botanical Research Institute of Texas, Fort Worth, Texas, 76107, United States of America
Carbone, Ignazio; Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27606, United States of America
Miadlikowska, Jolanta; Department of Biology, Duke University, Durham, North Carolina, 27708, United States of America
Lutzoni, François; Department of Biology, Duke University, Durham, North Carolina, 27708, United States of America
Language :
English
Title :
Ancient Rapid Radiation Explains Most Conflicts Among Gene Trees and Well-supported Phylogenomic Trees of Nostocalean Cyanobacteria.
Alda F., Tagliacollo V.A., Bernt M.J., Waltz B.T., Ludt W.B., Faircloth B.C., Alfaro M.E., Albert J.S., Chakrabarty P. 2019. Resolving deep nodes in an ancient radiation of neotropical fishes in the presence of conflicting signals from incomplete lineage sorting. Syst. Biol. 68:573–593.
Avni E., Snir S. 2020. A new phylogenomic approach for quantifying horizontal gene transfer trends in prokaryotes. Sci. Rep. 10:1–14.
Barraclough T.G. 2019. Species and speciation without sex. The evolutionary biology of species. Oxford: Oxford University Press. p. 110–131.
Bekker A., Holland H.D., Wang P.L., Rumble D.I., Stein H.J., Hannah J.L., Beukes N.J. 2004. Dating the rise of atmospheric oxygen. Nature 427:117–120.
Bell-Doyon P., Laroche J., Saltonstall K., Villarreal Aguilar J.C. 2020. Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, Zamia pseudoparasitica. Environ. DNA 2:418–428.
Borowiec M.L. 2016. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4:e1660.
Bossert S., Murray E.A., Pauly A., Chernyshov K., Brady S.G., Danforth B.N. 2021. Gene tree estimation error with ultraconserved elements: an empirical study on Pseudapis Bees. Syst. Biol. 70:803–821.
Bremer B., Jansen R.K., Oxelman B., Backlund M., Lantz H., Kim K.J. 1999. More characters or more taxa for a robust phylogeny—case study from the coffee family (Rubiaceae). Syst. Biol. 48:413–435.
Brown J.W., Smith S.A. 2018. The past sure is tense: on interpreting phylogenetic divergence time estimates. Syst. Biol. 67:340–353.
Bryant D., Hahn M.W. 2020. The concatenation question. In: Scornavacca C., Delsuc F., Galtier N., editors. Phylogenetics in the genomic era. p. 3.4:1–3.4:23 [No commercial publisher, Authors open access book].
Cai R., Ané C. 2021. Assessing the fit of the multi-species network coalescent to multi-locus data. Bioinformatics 37:634–641.
Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973.
Carbone I., White J.B., Miadlikowska J., Arnold A.E., Miller M.A., Magain N., U’Ren J.M., Lutzoni F. 2019. T-BAS Version 2.1: tree-based alignment selector toolkit for evolutionary placement of DNA sequences and viewing alignments and specimen metadata on curated and custom trees. Microbiol. Resour. Announc. 8:1–5.
Chafin T.K., Douglas M.R., Bangs M.R., Martin B.T., Mussmann S.M., Douglas M.E. 2021. Taxonomic uncertainty and the anomaly zone: phylogenomics disentangle a rapid radiation to resolve contentious species (Gila robusta complex) in the Colorado river. Genome Biol. Evol. 13:1–19.
Chakrabarty P., Faircloth B.C., Alda F., Ludt W.B., Mcmahan C.D., Near T.J., Dornburg A., Albert J.S., Arroyave J., Stiassny M.L.J., Sorenson L., Alfaro M.E. 2017. Phylogenomic systematics of ostariophysan fishes: ultraconserved elements support the surprising non-monophyly of characiformes. Syst. Biol. 66:881–895.
Cloutier A., Sackton T.B., Grayson P., Clamp M., Baker A.J., Edwards S.V. 2019. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst. Biol. 68:937–955.
Coleman G.A., Davín A.A., Mahendrarajah T.A., Szánthó L.L., Spang A., Hugenholtz P., Szöllősi G.J., Williams T.A. 2021. A rooted phylogeny resolves early bacterial evolution. Science 372:eabe0511.
Cornet L., Magain N., Baurain D., Lutzoni F. 2021. Exploring syntenic conservation across genomes for phylogenetic studies of organisms subjected to horizontal gene transfers: a case study with cyanobacteria and cyanolichens. Mol. Phylogenet. Evol. 162:107100.
Daubin V., Gouy M., Perrière G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12:1080–1090.
Degnan J.H., Rosenberg N.A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genet. 2:e68.
Demoulin C.F., Lara Y.J., Cornet L., François C., Baurain D., Wilmotte A., Javaux E.J. 2019. Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. 140:206–223.
Doolittle W.F. 1999b. Phylogenetic classification and the universal tree. Science 284:2124–2129.
Doolittle W.F., Boucher Y., Nesbø C.L., Douady C.J., Andersson J.O., Roger A.J., Andersson S.G.E., Martin W., Raven J.A., Lane N., Whatley F.R. 2003. How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. B Biol. Sci 358:39–58.
Doolittle W.F., Logsdon J.M. Jr. 1998. Archaeal genomics: Do archaea have a mixed heritage? Curr. Biol. 8:R209–R211.
Farquhar J., Zerkle A.L., Bekker A. 2011. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 107:11–36.
Gagunashvili A.N., Andrésson O.S. 2018. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 19:1–18.
Goldman N., Thorne J.L., Jones D.T. 1998. Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics 149:445–458.
Greenlon A., Chang P.L., Damtew Z.M., Muleta A., Carrasquilla-Garcia N., Kim D., Nguyen H.P., Suryawanshi V., Krieg C.P., Yadav S.K., Patel J.S., Mukherjee A., Udupa S., Benjelloun I., Thami-Alami I., Yasin M., Patil B., Singh S., Sarma B.K., Von Wettberg E.J.B., Kahraman A., Bukun B., Assefa F., Tesfaye K., Fikre A., Cook D.R. 2019. Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria. Proc. Natl. Acad. Sci. U.S.A. 116:15200–15209.
Groussin M., Poyet M., Sistiaga A., Kearney S.M., Moniz K., Noel M., Hooker J., Gibbons S.M., Segurel L., Froment A., Mohamed R.S., Fezeu A., Juimo V.A., Lafosse S., Tabe F.E., Girard C., Iqaluk D., Nguyen L.T.T., Shapiro B.J., Lehtimäki J., Ruokolainen L., Kettunen P.P., Vatanen T., Sigwazi S., Mabulla A., Domínguez-Rodrigo M., Nartey Y.A., Agyei-Nkansah A., Duah A., Awuku Y.A., Valles K.A., Asibey S.O., Afihene M.Y., Roberts L.R., Plymoth A., Onyekwere C.A., Summons R.E., Xavier R.J., Alm E.J. 2021. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184:2053–2067.e18.
Gutiérrez-García K., Bustos-Díaz E.D., Corona-Gómez J.A., Ramos-Aboites H.E., Sélem-Mojica N., Cruz-Morales P., Pérez-Farrera M.A., Barona-Gómez F., Cibrián-Jaramillo A. 2019. Cycad coralloid roots contain bacterial communities including cyanobacteria and Caulobacter spp. that encode niche-specific biosynthetic gene clusters. Genome Biol. Evol 11:319–334.
Hahn M.W., Nakhleh L. 2016. Irrational exuberance for resolved species trees. Evolution 70:7–17.
Hernández-López A., Chabrol O., Royer-Carenzi M., Merhej V., Pontarotti P., Raoult D. 2013. To tree or not to tree? Genome-wide quantification of recombination and reticulate evolution during the diversification of strict intracellular bacteria. Genome Biol. Evol 5:2305–2317.
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35:518–522.
Hoelzer G.A., Meinick D.J. 1994. Patterns of speciation and limits to phylogenetic resolution. Trends Ecol. Evol. 9:104–107.
Huang H., He Q., Kubatko L.S., Knowles L.L. 2010. Sources of error inherent in species-tree estimation: impact of mutational and coalescent effects on accuracy and implications for choosing among different methods. Syst. Biol. 59:573–583.
Huang H., Knowles L.L. 2009. What is the danger of the anomaly zone for empirical phylogenetics? Syst. Biol. 58:527–536.
Huang J., Liu Y., Zhu T., Yang Z. 2021. The asymptotic behavior of bootstrap support values in molecular phylogenetics. Syst. Biol. 70:774–785.
Janda J.M., Abbott S.L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45:2761–2764.
Junier T., Zdobnov E.M. 2010. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26:1669–1670.
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14:587–589.
Kang D.D., Li F., Kirton E., Thomas A., Egan R., An H., Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019:1–13.
Kaštovský J., Berrendero Gomez E., Hladil J., Johansen J.R. 2014. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 181:279.
Katoh K., Kuma K.-ichi, Toh H., Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33:511–518.
Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772–780.
Keller M., Spyrou M.A., Scheib C.L., Neumann G.U., Kröpelin A., Haas-Gebhard B., Päffgen B., Haberstroh J., Ribera i Lacomba A., Raynaud C., Cessford C., Durand R., Stadler P., Nägele K., Bates J.S., Trautmann B., Inskip S.A., Peters J., Robb J.E., Kivisild T., Castex D., McCormick M., Bos K.I., Harbeck M., Herbig A., Krause J. 2019. Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). Proc. Natl. Acad. Sci 116:12363–12372.
Kim J., Na S., Kim D., Chun J. 2021. UBCG2: up-to-date bacterial core genes and pipeline for phylogenomic analysis. J. Microbiol. 59:609–615.
Komárek J., Kaštovský J., Mareš J., Johansen J.R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295–335.
Kriventseva E.V., Kuznetsov D., Tegenfeldt F., Manni M., Dias R., Simão F.A., Zdobnov E.M. 2019. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47:D807–D811.
Kubatko L.S., Degnan J.H. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst. Biol. 56:17–24.
Kurland C.G., Canback B., Berg O.G. 2003. Horizontal gene transfer: a critical view. Proc. Natl. Acad. Sci 100:9658–9662.
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2016. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34:msw260.
Larget B.R., Kotha S.K., Dewey C.N., Ané C. 2010. BUCKy: gene tree/ species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26:2910–2911.
Lartillot N. 2020. Phylobayes: Bayesian phylogenetics using site-heterogeneous models.
Lartillot N., Blanquart S., Lepage T. 2015. PhyloBayes: a Bayesian software for phylogenetic reconstruction using mixture models. PhyloBayes Manual 1–21.
Lartillot N., Lepage T., Blanquart S. 2009. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288.
Lartillot N., Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21:1095–1109.
Lawrence J.G., Ochman H. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci 95:9413–9417.
Le S.Q., Gascuel O., Lartillot N. 2008a. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24:2317–2323.
Le S.Q., Lartillot N., Gascuel O. 2008b. Phylogenetic mixture models for proteins. Philos. Trans. R. Soc. B Biol. Sci 363:3965–3976.
Léveillé-Bourret E., Chen B.-H., Garon-Labrecque M.-E., Ford B.A., Starr J.R. 2020. RAD sequencing resolves the phylogeny, taxonomy and biogeography of Trichophoreae despite a recent rapid radiation (Cyperaceae). Mol. Phylogenet. Evol. 145:106727.
Lewis P.O., Chen M.-H., Kuo L., Lewis L.A., Fučíková K., Neupane S., Wang Y.-B., Shi D. 2016. Estimating Bayesian phylogenetic information content. Syst. Biol. 65:1009–1023.
Li Y., Shen X.-X., Evans B., Dunn C.W., Rokas A. 2020. Rooting the animal tree of life. Mol. Biol. Evol. 38:4322–4333.
Lienemann T., Beyer W., Pelkola K., Rossow H., Rehn A., Antwerpen M., Grass G. 2018. Genotyping and phylogenetic placement of
Bacillus anthracis isolates from Finland, a country with rare anthrax cases. BMC Microbiol. 18:102.
Linkem C.W., Minin V.N., Leaché A.D. 2016. Detecting the anomaly zone in species trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata: Scincidae). Syst. Biol. 65:465–477.
Liu L., Xi Z., Davis C.C. 2015. Coalescent methods are robust to the simultaneous effects of long branches and incomplete lineage sorting. Mol. Biol. Evol. 32:791–805.
Lopes F., Oliveira L.R., Kessler A., Beux Y., Crespo E., Cárdenas-Alayza S., Majluf P., Sepúlveda M., Brownell R.L., Franco-Trecu V., Páez-Rosas D., Chaves J., Loch C., Robertson B.C., Acevedo-Whitehouse K., Elorriaga-Verplancken F.R., Kirkman S.P., Peart C.R., Wolf J.B.W., Bonatto S.L. 2021. Phylogenomic discordance in the eared seals is best explained by incomplete lineage sorting following explosive radiation in the southern hemisphere. Syst. Biol. 70:786–802.
Louca S. 2021. The rates of global bacterial and archaeal dispersal. ISME J. 16:159–167.
Mai U., Mirarab S. 2018. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19:272.
Martiny J.B.H., Bohannan B.J.M., Brown J.H., Colwell R.K., Fuhrman J.A., Green J.L., Horner-Devine M.C., Kane M., Krumins J.A., Kuske C.R., Morin P.J., Naeem S., Øvreås L., Reysenbach A.-L., Smith V.H., Staley J.T. 2006. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102–112.
McDonald T.R., Mueller O., Dietrich F.S., Lutzoni F. 2013. High-throughput genome sequencing of lichenizing fungi to assess gene loss in the ammonium transporter/ammonia permease gene family. BMC Genomics 14:225.
McInerney J.O., Cotton J.A., Pisani D. 2008. The prokaryotic tree of life: past, present…and future? Trends Ecol. Evol. 23:276–281.
Meleshko O., Martin M.D., Korneliussen T.S., Schröck C., Lamkowski P., Schmutz J., Healey A., Piatkowski B.T., Shaw A.J., Weston D.J., Flatberg K.I., Szövényi P., Hassel K., Stenøien H.K. 2021. Extensive genome-wide phylogenetic discordance is due to incomplete lineage sorting and not ongoing introgression in a rapidly radiated bryophyte genus. Mol. Biol. Evol. 38:2750–2766.
Mendes F.K., Hahn M.W. 2018. Why concatenation fails near the anomaly zone. Syst. Biol. 67:158–169.
Morales-Briones D.F., Kadereit G., Tefarikis D.T., Moore M.J., Smith S.A., Brockington S.F., Timoneda A., Yim W.C., Cushman J.C., Yang Y. 2021. Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in amaranthaceae s.l. Syst. Biol. 70:219–235.
Morel B., Barbera P., Czech L., Bettisworth B., Hübner L., Lutteropp S., Serdari D., Kostaki E.-G., Mamais I., Kozlov A.M., Pavlidis P., Paraskevis D., Stamatakis A. 2021. Phylogenetic analysis of SARS-CoV-2 data is difficult. Mol. Biol. Evol. 38:1777–1791.
Murray G.G.R., Weinert L.A., Rhule E.L., Welch J.J. 2016. The phylogeny of Rickettsia using different evolutionary signatures: how tree-like is bacterial evolution? Syst. Biol. 65:265–279.
Nelson J.M., Hauser D.A., Gudiño J.A., Guadalupe Y.A., Meeks J.C., Salazar Allen N., Villarreal J.C., Li F.-W. 2019. Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol. Evol 11:1959–1964.
Nelson K.E., Clayton R.A., Gill S.R., Gwinn M.L., Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Nelson W.C., Ketchum K.A., McDonald L., Utterback T.R., Malek J.A., Linher K.D., Garrett M.M., Stewart A.M., Cotton M.D., Pratt M.S., Phillips C.A., Richardson D., Heidelberg J., Sutton G.G., Fleischmann R.D., Eisen J.A., White O., Salzberg S.L., Smith H.O., Venter J.C., Fraser C.M. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329.
Nesbø C.L., Boucher Y., Doolittle W.F. 2001. Defining the core of nontransferable prokaryotic genes: the euryarchaeal core. J. Mol. Evol. 53:340–350.
Nguyen L.T., Schmidt H.A., Von Haeseler A., Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–274.
Nurk S., Meleshko D., Korobeynikov A., Pevzner P.A. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27:824–834.
Nute M., Saleh E., Warnow T. 2019. Evaluating statistical multiple sequence alignment in comparison to other alignment methods on protein data sets. Syst. Biol. 68:396–411.
Orakov A., Fullam A., Coelho L.P., Khedkar S., Szklarczyk D., Mende D.R., Schmidt T.S.B., Bork P. 2021. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22:1–19.
Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290.
Parks D.H., Rinke C., Chuvochina M., Chaumeil P.-A., Woodcroft B.J., Evans P.N., Hugenholtz P., Tyson G.W. 2017. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2:1533–1542.
Pérez-Carrascal O.M., Terrat Y., Giani A., Fortin N., Greer C.W., Tromas N., Shapiro B.J. 2019. Coherence of Microcystis species revealed through population genomics. ISME J. 13:2887–2900.
Philippe H., Brinkmann H., Lavrov D.V., Littlewood D.T.J., Manuel M., Wörheide G., Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9:e1000602.
Pouchon C., Fernández A., Nassar J.M., Boyer F., Aubert S., Lavergne S., Mavárez J. 2018. Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Syst. Biol. 67:1041–1060.
R Core Team A. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Redmond A.K., McLysaght A. 2021. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12:1783.
dos Reis M., Yang Z. 2011. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28:2161–2172.
Richards E.J., Brown J.M., Barley A.J., Chong R.A., Thomson R.C. 2018. Variation across mitochondrial gene trees provides evidence for systematic error: how much gene tree variation is biological? Syst. Biol. 67:847–860.
Rokas A., Carroll S.B. 2005. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol. Biol. Evol. 22:1337–1344.
Rosenberg N.A. 2013. Discordance of species trees with their most likely gene trees: a unifying principle. Mol. Biol. Evol. 30:2709–2713.
Rosenberg N.A., Tao R. 2008. Discordance of species trees with their most likely gene trees: the case of five taxa. Syst. Biol. 57:131–140.
Roycroft E.J., Moussalli A., Rowe K.C. 2020. Phylogenomics uncovers confidence and conflict in the rapid radiation of Australo-Papuan rodents. Syst. Biol. 69:431–444.
Rozewicki J., Li S., Amada K.M., Standley D.M., Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 47:W5–W10.
Salichos L., Rokas A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:327–331.
Sánchez-Baracaldo P. 2015. Origin of marine planktonic cyanobacteria. Sci. Rep. 5:17418.
Sánchez-Baracaldo P., Ridgwell A., Raven J.A. 2014. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24:652–657.
Sayyari E., Whitfield J.B., Mirarab S. 2018. DiscoVista: interpretable visualizations of gene tree discordance. Mol. Phylogenet. Evol. 122:110–115.
Shen X.-X., Hittinger C.T., Rokas A. 2017. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1:0126.
Shen X.-X., Steenwyk J.L., Rokas A. 2021. Dissecting incongruence between concatenation- and quartet-based approaches in phylogenomic data. Syst. Biol. 70:997–1014.
Shi T., Falkowski P.G. 2008. Genome evolution in cyanobacteria: the stable core and the variable shell. Proc. Natl. Acad. Sci 105:2510–2515.
Shih P.M., Wu D., Latifi A., Axen S.D., Fewer D.P., Talla E., Calteau A., Cai F., Tandeau de Marsac N., Rippka R., Herdman M., Sivonen K., Coursin T., Laurent T., Goodwin L., Nolan M., Davenport K.W., Han C.S., Rubin E.M., Eisen J.A., Woyke T., Gugger M., Kerfeld C.A. 2013. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl. Acad. Sci 110:1053–1058.
Smith S.A., Moore M.J., Brown J.W., Yang Y. 2015. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15:1–15.
Solís-Lemus C., Ané C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12:e1005896.
Solís-Lemus C., Bastide P., Ané C. 2017. PhyloNetworks: a package for phylogenetic networks. Mol. Biol. Evol. 34:3292–3298.
Sorek R., Zhu Y., Creevey C.J., Francino M.P., Bork P., Rubin E.M. 2007. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
Steenwyk J.L., Buida T.J., Li Y., Shen X.-X., Rokas A. 2020. ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biol. 18:e3001007.
Stenz N.W.M., Larget B., Baum D.A., Ané C. 2015. Exploring tree-like and non-tree-like patterns using genome sequences: an example using the inbreeding plant species Arabidopsis thaliana (L.) Heynh. Syst. Biol. 64:809–823.
Suyama M., Torrents D., Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612.
Taib N., Megrian D., Witwinowski J., Adam P., Poppleton D., Borrel G., Beloin C., Gribaldo S. 2020. Genome-wide analysis of the Firmicutes illuminates the diderm/monoderm transition. Nat. Ecol. Evol. 4:1661–1672.
Tan G., Muffato M., Ledergerber C., Herrero J., Goldman N., Gil M., Dessimoz C. 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Syst. Biol. 64:778–791.
Timofeev V., Bahtejeva I., Mironova R., Titareva G., Lev I., Christiany D., Borzilov A., Bogun A., Vergnaud G. 2019. Insights from Bacillus anthracis strains isolated from permafrost in the tundra zone of Russia. PLoS One 14:e0209140.
Tomitani A., Knoll A.H., Cavanaugh C.M., Ohno T. 2006. The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. 103:5442–5447.
Tringe S.G., Hugenholtz P. 2008. A renaissance for the pioneering 16S rRNA gene. Curr. Opin Microbiol. 11:442–446.
Uyeda J.C., Harmon L.J., Blank C.E. 2016. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS One 11:e0162539.
Vergnaud G., Girault G., Thierry S., Pourcel C., Madani N., Blouin Y. 2016. Comparison of French and worldwide Bacillus anthracis strains favors a recent, post-Columbian origin of the predominant North-American clade. PLoS One 11:e0146216.
Vos M., Didelot X. 2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3:199–208.
Walsh H.E., Kidd M.G., Moum T., Friesen V.L. 1999. Polytomies and the power of phylogenetic inference. Evolution 53:932–937.
Walter J.M., Coutinho F.H., Dutilh B.E., Swings J., Thompson F.L., Thompson C.C. 2017. Ecogenomics and taxonomy of cyanobacteria phylum. Front. Microbiol. 8:2132.
Wang H.-C., Minh B.Q., Susko E., Roger A.J. 2018. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 67:216–235.
Wang H.C., Susko E., Roger A.J. 2019. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst. Biol. 68:1003–1019.
Ward R.D., Stajich J.E., Johansen J.R., Huntemann M., Clum A., Foster B., Foster B., Roux S., Palaniappan K., Varghese N., Mukherjee S., Reddy T.B.K., Daum C., Copeland A. 2021. Metagenome sequencing to explore phylogenomics of terrestrial cyanobacteria. Microbiol. Resour. Announc. 10:e00258–e00221.
Warshan D., Liaimer A., Pederson E., Kim S.-Y., Shapiro N., Woyke T., Altermark B., Pawlowski K., Weyman P.D., Dupont C.L., Rasmussen U. 2018. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol. Biol. Evol. 35:1160–1175.
Woese C.R., Fox G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci 74:5088–5090.
Wu M., Eisen J.A. 2008. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 9:R151.
Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–1591.
Yang Z. 2020. User Guide PAML: phylogenetic analysis by maximum likelihood. Version 4.9j.
Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F.O., Rosselló-Móra R. 2008. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst. Appl. Microbiol. 31:241–250.
Zhang C., Mirarab S. 2022. Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Mol. Biol. Evol. 39:msac215.
Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinf. 19:15–30.
Zhang R., Wang Y.-H., Jin J.-J., Stull G.W., Bruneau A., Cardoso D., De Queiroz L.P., Moore M.J., Zhang S.-D., Chen S.-Y., Wang J., Li D.-Z., Yi T.-S. 2020b. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of leguminosae. Syst. Biol. 69:613–622.
Zhaxybayeva O., Gogarten J.P., Charlebois R.L., Doolittle W.F., Papke R.T. 2006. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 16:1099–1108.
Zhu Q., Mai U., Pfeiffer W., Janssen S., Asnicar F., Sanders J.G., Belda-Ferre P., Al-Ghalith G.A., Kopylova E., McDonald D., Kosciolek T., Yin J.B., Huang S., Salam N., Jiao J., Wu Z., Xu Z.Z., Cantrell K., Yang Y., Sayyari E., Rabiee M., Morton J.T., Podell S., Knights D., Li W., Huttenhower C., Segata N., Smarr L., Mirarab S., Knight R. 2019. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun. 10:5477.
Zolan M.E., Pukkila P.J. 1986. Inheritance of DNA methylation in Coprinus cinereus. Mol. Cell. Biol. 6:195–200.