Adams, C., Brand, C., Dentith, M., Fiorentini, M., Caruso, S., Mehta, M., The use of pXRF for light element geochemical analysis: a review of hardware design limitations and an empirical investigation of air, vacuum, helium flush and detector window technologies. Geochem. Explor. Environ. Anal. 20 (2020), 366–380, 10.1144/geochem2019-076.
Ahmed, A., Crawford, A.J., Leslie, C., Phillips, J., Wells, T., Garay, A., Hood, S.B., Cooke, D.R., Assessing copper fertility of intrusive rocks using field portable X-ray fluorescence (pXRF) data. Geochem. Explor. Environ. Anal. 20 (2019), 81–97.
Al-Musawi, M., Kaczmarek, S., A new carbonate-specific quantification procedure for determining elemental concentrations from portable energy-dispersive X-ray fluorescence (PXRF) data. Appl. Geochem., 113, 2020, 104491, 10.1016/j.apgeochem.2019.104491.
Analytical Methods Committe, Recommendations for the definition, estimation and use of the detection limit. Analyst 112 (1987), 199–204, 10.1039/AN9871200199.
Arenas-Islas, D., Huerta-Diaz, M.A., Norzagaray-López, C.O., Mejia-Piña, K.G., Valdivieso-Ojeda, J.A., Otero, X.L., Arcega-Cabrera, F., Calibration of portable X-ray fluorescence equipment for the geochemical analysis of carbonate matrices. Sediment. Geol., 391, 2019, 105517, 10.1016/J.SEDGEO.2019.105517.
Belter, M., Sajnóg, A., Barałkiewicz, D., Over a century of detection and quantification capabilities in analytical chemistry – Historical overview and trends. Talanta 129 (2014), 606–616, 10.1016/j.talanta.2014.05.018.
Brouwer, P., Theory of XRF. Getting Acquainted with the Principles. 5th edition, 2018, Malvern Panalytical, Almelo, The Netherlands.
Bruker, Bruker - Tracer 5i: Geo Exploration Calibration (P/N: 730.0187) and Geo Mining Calibration (P/N: 730.0203). 2017.
Cao, Y., Linnen, R., Good, D., Samson, I., Applications of the combined portable XRF-benchtop SEM methodology to PGE exploration. Ore Geol. Rev. 101 (2018), 32–53, 10.1016/j.oregeorev.2018.07.006.
Cohen, D.R., Cohen, E.J., Graham, I.T., Soares, G.G., Hand, S.J., Archer, M., Geochemical exploration for vertebrate fossils using field portable XRF. J. Geochemical Explor. 181 (2017), 1–9, 10.1016/J.GEXPLO.2017.06.012 12p.
Conrey, R.M.M., Goodman-Elgar, M., Bettencourt, N., Seyfarth, A., Van Hoose, A., Wolff, J.A.A., Calibration of a portable X-ray fluorescence spectrometer in the analysis of archaeological samples using influence coefficients. Geochem. Explor. Environ. Anal. 14 (2014), 291–301, 10.1144/geochem2013-198.
Da Silva, A.C., De Vleeschouwer, D., Boulvain, F., Claeys, P., Fagel, N., Humblet, M., Mabille, C., Michel, J., Sardar Abadi, M., Pas, D., Dekkers, M.J.J., Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks – Merits and pitfalls: examples from the Devonian in Belgium. Mar. Pet. Geol. 46 (2013), 173–189, 10.1016/j.marpetgeo.2013.06.012.
Da Silva, A.C., Dekkers, M.J., De Vleeschouwer, D., Hladil, J., Chadimova, L., Slavík, L., Hilgen, F.J., Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world. Geology, 47, 2019, 10.1130/G45511.1.
Da Silva, A.C., Sinnesael, M., Claeys, P., Davies, J.H.F., de Winter, N.J., Percival, L., Schaltegger, U., Vleeschouwer, D., Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating. Sci. Rep., 10, 2020, 12940 12p.
De Vleeschouwer, D., Königshof, P., Claeys, P., Reading time and paleoenvironmental change in the Emsian–Eifelian boundary GSSP section (Wetteldorf, Germany): A combination of cyclostratigraphy and facies analysis. Newsl. Stratigr., 2017, 10.1127/nos/2017/0397.
Declercq, Y., Delbecque, N., De Grave, J., De Smedt, P., Finke, P., Mouazen, A.M., Nawar, S., Vandenberghe, D., Van Meirvenne, M., Verdoodt, A., A comprehensive study of three different portable XRF scanners to assess the soil geochemistry of an extensive sample dataset. Remote Sens., 11, 2019, 10.3390/rs11212490.
Drake, B.L., MacDonald, B.L., Advances in portable X-ray fluorescence spectrometry. Intrumental, application and interpretation, 2023, Royal Society of Chemistry, 547p.
Duée, C., Orberger, B., Maubec, N., Laperche, V., Capar, L., Bourguignon, A., Bourrat, X., El Mendili, Y., Chateigner, D., Gascoin, S., Nolte, H., Koert, P., Impact of heterogeneities and surface roughness on pXRF, pIR, XRD and Raman analyses: challenges for on-line, real-time combined mineralogical and chemical analyses on drill cores and implication for “high speed” Ni-laterite exploration. J. Geochem. Explor. 198 (2019), 1–17.
Fiamegos, Y., de la Calle Guntiñas, M.B., Validation strategy for an ed-xrf method to determine trace elements in a wide range of organic and inorganic matrices based on fulfilment of performance criteria. Spectrochim. Acta - Part B At. Spectrosc., 150, 2018, 10.1016/j.sab.2018.10.009.
Forster, N., Grave, P., Vickery, N., Kealhofer, L., Non-destructive analysis using PXRF: methodology and application to archaeological ceramics. X-Ray Spectrom 40 (2011), 389–398, 10.1002/xrs.1360.
Frahm, E., Monnier, G.F., Jelinski, N.A., Fleming, E.P., Barber, B.L., Lambon, J.B., Chemical soil surveys at the Bremer Site (Dakota county, Minnesota, USA): measuring phosphorous content of sediment by portable XRF and ICP-OES. J. Archaeol. Sci. 75 (2016), 115–138, 10.1016/j.jas.2016.10.004.
Gallhofer, D., Lottermoser, B.G., The influence of spectral interferences on critical element determination with portable X-ray fluorescence (pXRF). Minerals, 8, 2018, 10.3390/min8080320.
Goodale, N., Bailey, D.G., Jones, G.T., Prescott, C., Scholz, E., Stagliano, N., Lewis, C., PXRF: A study of inter-instrument performance. J. Archaeol. Sci. 39 (2012), 875–883, 10.1016/j.jas.2011.10.014.
Govindaraju, K., Compilation of working values and sample description for 383 geostandards. Geostand. Newslett. 18 (1994), 1–158, 10.1046/j.1365-2494.1998.53202081.x-i1.
Govindaraju, K., Geochemical reference materials. Geochemistry. Encyclopedia of Earth Science, 1998, Springer, Dordrecht, 10.1007/1-4020-4496-8_138.
Gregory, B.R.B., Patterson, R.T., Reinhardt, E.G., Galloway, J.M., Roe, H.M., An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chem. Geol. 521 (2019), 12–27, 10.1016/j.chemgeo.2019.05.008.
Hall, G.E.M., Bonham-Carter, G.F., Buchar, A., Evaluation of portable X-ray fluorescence (pXRF) in exploration and mining: phase 1, control reference materials. Geochem. Explor. Environ. Anal. 14 (2014), 99–123, 10.1144/geochem2013-241.
Hunt, A.M.W., Speakman, R.J., Portable XRF analysis of archaeological sediments and ceramics. J. Archaeol. Sci. 53 (2015), 626–638, 10.1016/j.jas.2014.11.031.
Ibáñez-Insa, J., Pérez-Cano, J., Fondevilla, V., Oms, O., Rejas, M., Fernández-Turiel, J.L., Anadón, P., Portable X-ray fluorescence identification of the Cretaceous–Paleogene boundary: application to the Agost and Caravaca sections, SE Spain. Cretac. Res. 78 (2017), 139–148, 10.1016/j.cretres.2017.06.004.
Johnson, L.R.M., Ferguson, J.R., Freund, K.P., Drake, L., Duke, D., Evaluating obsidian calibration sets with portable X-Ray fluorescence (ED-XRF) instruments. J. Archaeol. Sci. Rep., 39, 2021, 103126.
Kasztovszky, Z., Maróti, B., Harsányi, I., Párkányi, D., Szilágyi, V., A comparative study of PGAA and portable XRF used for non-destructive provenancing archaeological obsidian. Quat. Int. 468 (2018), 179–189, 10.1016/j.quaint.2017.08.004.
Kenna, T.C.T.C., Nitsche, F.O.F.O., Herron, M.M.M., Mailloux, B.J.B.J., Peteet, D., Sritrairat, S., Sands, E., Baumgarten, J., Evaluation and calibration of a Field Portable X-Ray Fluorescence spectrometer for quantitative analysis of siliciclastic soils and sediments. J. Anal. At. Spectrom. 26 (2011), 395–405, 10.1039/C0JA00133C.
Kido, Y., Koshikawa, T., Tada, R., Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF microscanner. Mar. Geol. 229 (2006), 209–225, 10.1016/j.margeo.2006.03.002.
Kikongi, P., Salvas, J., Gosselin, R., Curve-fitting regression: improving light element quantification with XRF. X-Ray Spectrom. 46 (2017), 347–355, 10.1002/xrs.2760.
Knight, R.D., Kjarsgaard, B.A., Russell, H.A.J., An analytical protocol for determining the elemental chemistry of Quaternary sediments using a portable X-ray fluorescence spectrometer. Appl. Geochem., 131, 2021, 105026, 10.1016/j.apgeochem.2021.105026.
Lachance, G.R., Correction procedures using influence coefficients in X-ray fluorescence spectrometry. Spectrochim. Acta Part B At. Spectrosc. 48 (1993), 343–357, 10.1016/0584-8547(93)80040-2.
Lachance, G., Traill, R., A practical solution to the matrix problem in X-ray analysis. Can. J. S. 11 (1966), 43–48.
Lemière, B., A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 188 (2018), 350–363, 10.1016/j.gexplo.2018.02.006.
Lucas-Tooth, H., Pyne, C., The accurate determination of major constituents by X-ray fluorescent analysis in the presence of large interelement effects. Adv. X-ray Anal. 7 (1964), 523–541.
Lezzerini, M., Tamponi, M., Bertoli, M., Calibration of XRF data on silicate rocks using chemicals as in-house standards. Atti Soc. Tosc. Sci. Nat. Mem. Series A 121 (2014), 65–70 10.24.24/ASTSN.M.2014.16.
Lucas-Tooth, H.J., Price, B.J., A mathematical method for the investigation of interelement effects in X-Ray fluorescence analysis. Metallurgia 64 (1961), 149–152.
Magnusson, B., Örnemark, U., The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, Eurachem Guide. 2014.
Markowicz, A.A., Chapter 2: Quantification and correction procedures. Potts, P.J., West, M., (eds.) Portable X-Ray Fluorescence Spectrometry - Capabilities for In Situ Analysis, 2008, 13–38.
Martí, J., Zafrilla, S., Andújar, J., Jiménez-Mejías, M., Scaillet, B., Pedrazzi, D., Doronzo, D., Scaillet, S., Controls of magma chamber zonation on eruption dynamics and deposits stratigraphy: the case of El Palomar fallout succession (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res., 399, 2020, 106908, 10.1016/j.jvolgeores.2020.106908.
McNulty, B.A.B.A., Fox, N., Berry, R.F.R.F., Gemmell, J.B.B., Lithological discrimination of altered volcanic rocks based on systematic portable X-ray fluorescence analysis of drill core at the Myra Falls VHMS deposit, Canada. J. Geochem. Explor. 193 (2018), 1–21, 10.1016/j.gexplo.2018.06.005.
Mejía-Piña, K.G., Huerta-Diaz, M.A., González-Yajimovich, O., Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples. Talanta 161 (2016), 359–367, 10.1016/j.talanta.2016.08.066.
Molchanova, E.I., Smagunova, A.N., Shcherbakov, I.V., Specific features of matrix correction in the X_Ray fluorescence analysis of samples of widely varied composition. J. Anal. Chem. 66 (2011), 824–830.
Newlander, K., Goodale, N., Jones, G.T., Bailey, D.G., Empirical study of the effect of count time on the precision and accuracy of pXRF data. J. Archaeol. Sci. Rep. 3 (2015), 534–548, 10.1016/j.jasrep.2015.07.007.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html.
Quye-Sawyer, J., Vandeginste, V., Johnston, K.J.K.J., Application of handheld energy-dispersive X-ray fluorescence spectrometry to carbonate studies: opportunities and challenges. J. Anal. At. Spectrom. 30 (2015), 1490–1499, 10.1039/C5JA00114E.
Ravansari, R., Wilson, S.C., Tighe, M., Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environ. Int., 134, 2020, 105250, 10.1016/j.envint.2019.105250.
Röhl, U., Abrams, L.J., High-Resolution, downhole and nondestructivre core measurements from sites 999 and 1001 in the Caribbean. Leckie, R.M., Sigurdsson, H., Acton, G.D., Draper, G., (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 165, 2000, 191–203.
Rouillon, M., Taylor, M.P., Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research?. Environ. Pollut. 214 (2016), 255–264, 10.1016/j.envpol.2016.03.055.
Rousseau, R.M., Fundamental algorithm between concentration and intensity in XRF analysis 1—theory. X-Ray Spectrom. 13 (1984), 115–120, 10.1002/xrs.1300130306.
Rousseau, R.M., Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J. 18 (2001), 33–47.
Rousseau, R.M., Corrections for matrix effects in X-ray fluorescence analysis—a tutorial. Spectrochim. Acta Part B At. Spectrosc. 61 (2006), 759–777, 10.1016/j.sab.2006.06.014.
Rousseau, R.M., Willis, J.P., Duncan, A.R., Practical XRF Calibration Procedures for Major and Trace elements. X-Ray Spectrom. 25 (1996), 179–189, 10.1002/(SICI)1097-4539(199607)25:4<179::AID-XRS162>3.0.CO;2-Y.
Rowe, H., Hughes, N., Robinson, K., The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325 (2012), 122–131.
Ryan, J.G.G., Shervais, J.W.W., Li, Y., Reagan, M.K.K., Li, H.Y.Y., Heaton, D., Godard, M., Kirchenbaur, M., Whattam, S.A.A., Pearce, J.A.A., Chapman, T., Nelson, W., Prytulak, J., Shimizu, K., Petronotis, K., Chapman, T., Nelson, W., Prytulak, J., Shimizu, K., Petronotis, K., Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chem. Geol. 451 (2017), 55–66, 10.1016/j.chemgeo.2017.01.007.
Saker-Clark, M., Kemp, D.B., Coe, A.L., Portable X-Ray fluorescence spectroscopy as a tool for cyclostratigraphy. Geochem. Geophys. Geosyst. 20 (2019), 2531–2541, 10.1029/2018GC007582.
Shackley, M.S., Portable X-ray fluorescence spectrometry (pXRF): the good, the bad, and the ugly. Archaeol. Southwest Mag. 26 (2012), 1–8.
Sheppard, P.J., Irwin, G.J., Lin, S.C., McCaffrey, C.P., Characterization of New Zealand obsidian using PXRF. J. Archaeol. Sci. 38 (2011), 45–56, 10.1016/j.jas.2010.08.007.
Sinnesael, M., de Winter, N.J.N.J., Snoeck, C., Montanari, A., Claeys, P., An integrated pelagic carbonate multi-proxy study using portable X-ray fluorescence (pXRF): Maastrichtian strata from the Bottaccione Gorge, Gubbio, Italy. Cretac. Res. 91 (2018), 20–32, 10.1016/j.cretres.2018.04.010.
Steiner, A.E.E., Conrey, R.M.M., Wolff, J.A.A., PXRF calibrations for volcanic rocks and the application of in-field analysis to the geosciences. Chem. Geol. 453 (2017), 35–54, 10.1016/j.chemgeo.2017.01.023.
Stewart, E.K., Mauk, J.L., Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA. Precambrian Res. 294 (2017), 111–132, 10.1016/j.precamres.2017.03.023.
Tertian, R., Mathematical matrix correction procedures for x-ray fluorescence analysis. A critical survey. X-Ray Spectrom. 15 (1986), 177–190, 10.1002/xrs.1300150307.
Tjallingii, R., Röhl, U., Kölling, M., Bickert, T., Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem. Geophys. Geosyst., 8, 2007, 10.1029/2006GC001393.
Triantafyllou, A., Mattielli, N., Clerbois, S., Da Silva, A.C., Kaskes, P., Claeys, P., Devleeschouwer, X., Brkojewitsch, G., Optimizing multiple non-invasive techniques (PXRF, pMS, IA) to characterize coarse-grained igneous rocks used as building stones. J. Archaeol. Sci., 129, 2021, 105376, 10.1016/j.jas.2021.105376.
Turner, B.W., Tréanton, J.A., Slatt, R.M., The use of chemostratigraphy to refine ambiguous sequence stratigraphic correlations in marine mudrocks. An example from the Woodford Shale, Oklahoma, USA. J. Geol. Soc. Lond. 173 (2016), 854–868, 10.1144/jgs2015-125.
VanCott, R.J., McDonald, B.J., Seelos, A.G., Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nucl. Inst. Methods Phys. Res. Sect. A Accel. Spectro. Detect. Assoc. Equip. 422 (1999), 801–804, 10.1016/S0168-9002(98)01000-6.
Weltje, G., Bloemsma, M., Tjallingii, R., Heslop, D., Röhl, U., Croudace, I., Prediction of Geochemical Composition from XRF Core Scanner Data: A New Multivariate Approach Including Automatic selection of Calibration Samples and Quantification of Uncertainties. Croudace, I., R.R, (eds.) Of Sediment Cores. Developments in Paleoenvironmental Research, vol. 17, 2015, 507–534, 10.1007/978-94-017-9849-5_21 Dordrecht.
Weltje, G.J., Tjallingii, R., Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274 (2008), 423–438, 10.1016/j.epsl.2008.07.054.
de Winter, Niels J., Sinnesael, M., Makarona, C., Vansteenberge, S., Claeys, P., Trace element analyses of carbonates using portable and micro-X-ray fluorescence: performance and optimization of measurement parameters and strategies. J. Anal. At. Spectrom. 32 (2017), 1211–1223, 10.1039/C6JA00361C.
Young, K.E., Evans, C.A., Hodges, K.V., Bleacher, J.E., Graff, T.G., A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration. Appl. Geochem. 72 (2016), 77–87, 10.1016/j.apgeochem.2016.07.003.