[en] Although animal dispersal is known to play key roles in ecological and evolutionary processes such as colonization, population extinction and local adaptation, little is known about its genetic basis, particularly in vertebrates. Untapping the genetic basis of dispersal should deepen our understanding of how dispersal behaviour evolves, the molecular mechanisms that regulate it and link it to other phenotypic aspects in order to form the so-called dispersal syndromes. Here, we comprehensively combined quantitative genetics, genome-wide sequencing and transcriptome sequencing to investigate the genetic basis of natal dispersal in a known ecological and evolutionary model of vertebrate dispersal: the common lizard, Zootoca vivipara. Our study supports the heritability of dispersal in semi-natural populations, with less variation attributable to maternal and natal environment effects. In addition, we found an association between natal dispersal and both variation in the Carbonic Anhydrase (CA10) gene, and in the expression of several genes (TGFB2, SLC6A4, NOS1) involved in central nervous system functioning. These findings suggest that neurotransmitters (serotonin and nitric oxide) are involved in the regulation of dispersal and shaping dispersal syndromes. Several genes from the circadian clock (CRY2, KCTD21) were also differentially expressed between disperser and resident lizards, supporting that the circadian rhythm, known to be involved in long-distance migration in other taxa, might affect dispersal as well. Since neuronal and circadian pathways are relatively well conserved across vertebrates, our results are likely to be generalisable, and we therefore encourage future studies to further investigate the role of these pathways in shaping dispersal in vertebrates.
Disciplines :
Environmental sciences & ecology
Author, co-author :
San-Jose, Luis M ; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Bestion, Elvire; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Pellerin, Félix; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Richard, Murielle; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Di Gesu, Lucie; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Salmona, Jordi; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Winandy, Laurane ; Université de Liège - ULiège > Freshwater and OCeanic science Unit of reSearch (FOCUS) ; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Legrand, Delphine; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Bonneaud, Camille; Centre for Ecology and Conservation, Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
Guillaume, Olivier; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Calvez, Olivier; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Elmer, Kathryn R ; Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
Yurchenko, Andrey A ; Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK ; Current address: Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
Recknagel, Hans; Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK ; Current address: Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Clobert, Jean; Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS, 2, route du CNRS, 09200 Moulis, France
Cote, Julien ; Laboratoire Évolution & Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, IRD, 118 route de Narbonne, 31062, Toulouse, France
Alderton, W. K., Cooper, C. E., & Knowles, R. G. (2001). Nitric oxide synthases: Structure, function and inhibition. Biochemical Journal, 357(3), 593–615.
Alexa, A., & Rahnenführer, J. (2019). TopGO: Enrichment analysis for gene ontology. R package version 2.40.0.
Alexa, A., Rahnenführer, J., & Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics, 22(13), 1600–1607. https://doi.org/10.1093/bioinformatics/btl140
Al-Mubarak, B., Abouelhoda, M., Omar, A., AlDhalaan, H., Aldosari, M., Nester, M., Alshamrani, H. A., El-Kalioby, M., Goljan, E., Albar, R., Subjani, S., Tahir, A., Asfahani, S., Eskandrani, A., Almusaiab, A., Magrasi, A., Shinwari, J., Monies, D., & Al Tassan, N. (2017). Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: A trio study from Saudi families. Scientific Reports, 7(1), 5679. https://doi.org/10.1038/s41598-017-06033-1
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Armenta, T. C., Cole, S. W., Geschwind, D. H., Blumstein, D. T., & Wayne, R. K. (2019). Gene expression shifts in yellow-bellied marmots prior to natal dispersal. Behavioral Ecology, 30(2), 267–277. https://doi.org/10.1093/beheco/ary175
Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A., & Johnson, E. A. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3(10), e3376. https://doi.org/10.1371/journal.pone.0003376
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.
Bestion, E., Clobert, J., & Cote, J. (2015). Dispersal response to climate change: Scaling down to intraspecific variation. Ecology Letters, 18(11), 1226–1233. https://doi.org/10.1111/ele.12502
Bestion, E., Cucherousset, J., Teyssier, A., & Cote, J. (2015). Non-consumptive effects of a top-predator decrease the strength of the trophic cascade in a four-level terrestrial food web. Oikos, 124, 1597–1602. https://doi.org/10.1111/oik.02196
Bestion, E., Teyssier, A., Aubret, F., Clobert, J., & Cote, J. (2014). Maternal exposure to predator scents: Offspring phenotypic adjustment and dispersal. Proceedings of the Royal Society B: Biological Sciences, 281(1792), 20140701. https://doi.org/10.1098/rspb.2014.0701
Block, S., & Levine, J. M. (2021). How dispersal evolution and local adaptation affect the range dynamics of species lagging behind climate change. The American Naturalist, 197(6), E173–E187. https://doi.org/10.1086/714130
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput-Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x
Boudjemadi, K., Lecomte, J., & Clobert, J. (1999). Influence of connectivity on demography and dispersal in two contrasting habitats: An experimental approach. Journal of Animal Ecology, 68(6), 1207–1224. https://doi.org/10.1046/j.1365-2656.1999.00363.x
Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., & Bairoch, A. (2007). UniProtKB/swiss-Prot. Methods in Molecular Biology (Clifton, N.J.), 406, 89–112. https://doi.org/10.1007/978-1-59745-535-0_4
Bowler, D. E., & Benton, T. G. (2009). Variation in dispersal mortality and dispersal propensity among individuals: The effects of age, sex and resource availability. Journal of Animal Ecology, 78(6), 1234–1241. https://doi.org/10.1111/j.1365-2656.2009.01580.x
Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(8), 888–888. https://doi.org/10.1038/nbt0816-888d
Brisson, J. A., Davis, G. K., & Stern, D. L. (2007). Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evolution & Development, 9(4), 338–346. https://doi.org/10.1111/j.1525-142X.2007.00170.x
Broad Institute. (2019). Picard toolkit. GitHub Repository. Retrieved from. http://broadinstitute.github.io/picard/
Cai, X., Srivastava, S., Sun, Y., Li, Z., Wu, H., Zuvela-Jelaska, L., Li, J., Salamon, R. S., Backer, J. M., & Skolnik, E. Y. (2011). Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2β. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20072–20077.
Caillaud, M. C., Boutin, M., Braendle, C., & Simon, J.-C. (2002). A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity, 89(5), 346–352. https://doi.org/10.1038/sj.hdy.6800146
Chakarov, N., Jonker, R. M., Boerner, M., Hoffman, J. I., & Krüger, O. (2013). Variation at phenological candidate genes correlates with timing of dispersal and plumage morph in a sedentary bird of prey. Molecular Ecology, 22(21), 5430–5440. https://doi.org/10.1111/mec.12493
Charmantier, A., & Réale, D. (2005). How do misassigned paternities affect the estimation of heritability in the wild? Molecular Ecology, 14(9), 2839–2850. https://doi.org/10.1111/j.1365-294X.2005.02619.x
Chleilat, E., Mallmann, R., Spanagel, R., Klugbauer, N., Krieglstein, K., & Roussa, E. (2019). Spatiotemporal role of transforming growth factor Beta 2 in developing and mature mouse hindbrain serotonergic neurons. Frontiers in Cellular Neuroscience, 13, 427. https://doi.org/10.3389/fncel.2019.00427
Clobert, J., Baguette, M., Benton, T. G., & Bullock, J. M. (Eds.). (2012). Dispersal ecology and evolution (1st ed.). Oxford University Press.
Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S., & Massot, M. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters, 12(3), 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x
Clobert, J., Massot, M., & Le Galliard, J. F. (2012). Multi-determinism in natal dispersal: The common lizard as a model system. In J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock, (Eds.), Dispersal ecology and evolution (p. 497). Oxford University Press.
Clobert, J., Massot, M., Lecompte, J., Sorci, G., de Fraipont, M., & Barbault, R. (1994). Determinants of dispersal behavior: The common lizard as a case study. In L. J. Vitt & E. R. Pianka (Eds.), Lizard ecology: Historical and experimental perspectives (pp. 183–206). Princeton University Press.
Cote, J., Bestion, E., Jacob, S., Travis, J., Legrand, D., & Baguette, M. (2017). Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography, 40(1), 56–73. https://doi.org/10.1111/ecog.02538
Cote, J., & Clobert, J. (2007). Social personalities influence natal dispersal in a lizard. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 383–390. https://doi.org/10.1098/rspb.2006.3734
Cote, J., & Clobert, J. (2012). Dispersal syndromes in the common lizard: Personality traits, information use, and context-dependent dispersal decisions. In Dispersal ecology and evolution (1st ed., pp. 152–160). Oxford University Press.
Crespi, B. J. (2017). Shared sociogenetic basis of honey bee behavior and human risk for autism. Proceedings of the National Academy of Sciences, 114(36), 9502–9504. https://doi.org/10.1073/pnas.1712292114
De Smaele, E., Di Marcotullio, L., Moretti, M., Pelloni, M., Occhione, M. A., Infante, P., Cucchi, D., Greco, A., Pietrosanti, L., Todorovic, J., Coni, S., Canettieri, G., Ferreti, E., Bei, R., Maroder, M., Screpanti, I., & Gulino, A. (2011). Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and hedgehog activity in medulloblastoma. Neoplasia, 13(4), 374–385. https://doi.org/10.1593/neo.101630
De Villemereuil, P., Gimenez, O., & Doligez, B. (2013). Comparing parent-offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: A simulation study for gaussian and binary traits. Methods in Ecology and Evolution, 4(3), 260–275. https://doi.org/10.1111/2041-210X.12011
De Villemereuil, P., Schielzeth, H., Nakagawa, S., & Morrissey, M. (2016). General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics, 204(3), 1281–1294. https://doi.org/10.1534/genetics.115.186536
Dochtermann, N. A., Schwab, T., Anderson Berdal, M., Dalos, J., & Royauté, R. (2019). The heritability of behavior: A meta-analysis. Journal of Heredity, 110(4), 403–410. https://doi.org/10.1093/jhered/esz023
Donaldson, Z. R., Piel, D. A., Santos, T. L., Richardson-Jones, J., Leonardo, E. D., Beck, S. G., Champagne, F. A., & Hen, R. (2014). Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior. Neuropsychopharmacology, 39(2), 291–302. https://doi.org/10.1038/npp.2013.185
Duckworth, R. A., & Kruuk, L. E. B. (2009). Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution, 63(4), 968–977. https://doi.org/10.1111/j.1558-5646.2009.00625.x
Edelsparre, A. H., Vesterberg, A., Lim, J. H., Anwari, M., & Fitzpatrick, M. J. (2014). Alleles underlying larval foraging behaviour influence adult dispersal in nature. Ecology Letters, 17(3), 333–339. https://doi.org/10.1111/ele.12234
Falconer, D., & MacKay, T. (1996). Introduction to quantitative genetics (4a). Addison Wesley Longman Lmt.
Foster, J. D., Dunford, C., Sillar, K. T., & Miles, G. B. (2014). Nitric oxide-mediated modulation of the murine locomotor network. Journal of Neurophysiology, 111(3), 659–674. https://doi.org/10.1152/jn.00378.2013
Fronhofer, E. A., Legrand, D., Altermatt, F., Ansart, A., Blanchet, S., Bonte, D., Chaine, A., Dahirel, M., De Laender, F., De Raedt, J., di Gesu, L., Jacob, S., Kaltz, O., Laurent, E., Little, C. J., Madec, L., Manzi, F., Masier, S., Pellerin, F., … Cote, J. (2018). Bottom-up and top-down control of dispersal across major organismal groups. Nature Ecology & Evolution, 2(12), 1859–1863. https://doi.org/10.1038/s41559-018-0686-0
Galliard, J. L., Ferrière, R., & Clobert, J. (2003). Mother–offspring interactions affect natal dispersal in a lizard. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1520), 1163–1169. https://doi.org/10.1098/rspb.2003.2360
Gloria-Soria, A., & Azevedo, R. B. R. (2008). Npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans. Current Biology, 18(21), 1694–1699. https://doi.org/10.1016/j.cub.2008.09.043
Haag, C. R., Saastamoinen, M., Marden, J. H., & Hanski, I. (2005). A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proceedings of the Royal Society B: Biological Sciences, 272(1580), 2449–2456. https://doi.org/10.1098/rspb.2005.3235
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22. https://doi.org/10.1002/ana.22635
Hazlerigg, D. G., & Wagner, G. C. (2006). Seasonal photoperiodism in vertebrates: From coincidence to amplitude. Trends in Endocrinology & Metabolism, 17(3), 83–91. https://doi.org/10.1016/j.tem.2006.02.004
Hua, Z., Zhang, Q., Su, T., Lipinskas, T. W., & Ding, X. (1997). CDNA cloning, heterologous expression, and characterization of mouse CYP2G1, an olfactory-specific steroid hydroxylase. Archives of Biochemistry and Biophysics, 340(2), 208–214. https://doi.org/10.1006/abbi.1997.9899
Kaplan, J. R., Fontenot, M. B., Berard, J., Manuck, S. B., & Mann, J. J. (1995). Delayed dispersal and elevated monoaminergic activity in free-ranging rhesus monkeys. American Journal of Primatology, 35(3), 229–234. https://doi.org/10.1002/ajp.1350350305
Kardos, M., Husby, A., Mcfarlane, S. E., Qvarnström, A., & Ellegren, H. (2016). Whole-genome resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of detecting quantitative trait loci in natural populations. Molecular Ecology Resources, 16(3), 727–741. https://doi.org/10.1111/1755-0998.12498
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317
Koch, H., & Weber, Y. G. (2019). The glucose transporter type 1 (Glut1) syndromes. Epilepsy & Behavior, 91, 90–93. https://doi.org/10.1016/j.yebeh.2018.06.010
Krackow, S., & König, B. (2008). Microsatellite length polymorphisms associated with dispersal-related agonistic onset in male wild house mice (Mus musculus domesticus). Behavioral Ecology and Sociobiology, 62(5), 813–820. https://doi.org/10.1007/s00265-007-0507-y
Kumar, V., Wingfield, J. C., Dawson, A., Ramenofsky, M., Rani, S., & Bartell, P. (2010). Biological clocks and regulation of seasonal reproduction and migration in birds. Physiological and Biochemical Zoology, 83(5), 827–835. https://doi.org/10.1086/652243
Kvist, J., Mattila, A. L. K., Somervuo, P., Ahola, V., Koskinen, P., Paulin, L., Salmela, L., Fountain, T., Rastas, P., Ruokolainen, A., Taipale, M., Holm, L., Auvinen, P., Lehtonen, R., Frilander, M. J., & Hanski, I. (2015). Flight-induced changes in gene expression in the Glanville fritillary butterfly. Molecular Ecology, 24(19), 4886–4900. https://doi.org/10.1111/mec.13359
Le Galliard, J. F., Ferrière, R., & Clobert, J. (2005). Effect of patch occupancy on immigration in the common lizard. Journal of Animal Ecology, 74, 241–249. https://doi.org/10.1111/j.1365-2656.2004.00912.x
Legrand, D., Guillaume, O., Baguette, M., Cote, J., Trochet, A., Calvez, O., Zajitschek, S., Zajitschek, F., Lecomte, J., Quentin, B., Le Galliard, J. F., & Clobert, J. (2012). The Metatron: An experimental system to study dispersal and metaecosystems for terrestrial organisms. Nature Methods, 9(8), 828–833. https://doi.org/10.1038/nmeth.2104
Li, B., Bickel, R. D., Parker, B. J., Saleh Ziabari, O., Liu, F., Vellichirammal, N. N., Simon, J. C., Stern, D. L., Brisson, J. A., Levine, M. T., Wittkopp, P. J., Moran, N., & Andersson, L. (2020). A large genomic insertion containing a duplicated follistatin gene is linked to the pea aphid male wing dimorphism. eLife, 9, e50608. https://doi.org/10.7554/eLife.50608
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12), 550. https://doi.org/10.1186/s13059-014-0550-8
Lowe, W. H., & McPeek, M. A. (2014). Is dispersal neutral? Trends in Ecology & Evolution, 29(8), 444–450. https://doi.org/10.1016/j.tree.2014.05.009
Machicao, F., Peter, A., Machann, J., Königsrainer, I., Böhm, A., Lutz, S. Z., Heni, M., Fritsche, A., Schick, F., Köningsrainer, A., Stefan, N., Häring, H. U., & Staiger, H. (2016). Glucose-raising polymorphisms in the human clock gene cryptochrome 2 (CRY2) affect hepatic lipid content. PLoS One, 11(1), e0145563. https://doi.org/10.1371/journal.pone.0145563
Madeo, F., Carmona-Gutierrez, D., Kepp, O., & Kroemer, G. (2018). Spermidine delays aging in humans. Aging, 10(8), 2209–2211. https://doi.org/10.18632/aging.101517
Massot, M., Clobert, J., Lorenzon, P., & Rossi, J. M. (2002). Condition-dependent dispersal and ontogeny of the dispersal behaviour: An experimental approach. Journal of Animal Ecology, 71(2), 253–261. https://doi.org/10.1046/j.1365-2656.2002.00592.x
Massot, M., Clobert, J., Pilorge, T., Lecomte, J., & Barbault, R. (1992). Density dependence in the common lizard: Demographic consequences of a density manipulation. Ecology, 73(5), 1742–1756. https://doi.org/10.2307/1940026
Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography, 28(3), 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/gr.107524.110
Meylan, S., Belliure, J., Clobert, J., & de Fraipont, M. (2002). Stress and body condition as prenatal and postnatal determinants of dispersal in the common lizard (Lacerta vivipara). Hormones and behavior, 42(3), 319–326. https://doi.org/10.1006/hbeh.2002.1827
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature Methods, 5(7), 621–628. https://doi.org/10.1038/nmeth.1226
Mullon, C., Keller, L., & Lehmann, L. (2018). Social polymorphism is favoured by the co-evolution of dispersal with social behaviour. Nature Ecology & Evolution, 2(1), 132–140. https://doi.org/10.1038/s41559-017-0397-y
Nava, C., Lamari, F., Héron, D., Mignot, C., Rastetter, A., Keren, B., Cohen, D., Faudet, A., Bouteiller, D., Gilleron, M., Jacquette, A., Whalen, S., Afenjar, A., Périsse, D., Laurent, C., Duputis, C., Gautier, C., Gérard, M., Huguet, G., … Depienne, C. (2012). Analysis of the chromosome X exome in patients with autism spectrum disorders identified novel candidate genes, including TMLHE. Translational Psychiatry, 2(10), e179. https://doi.org/10.1038/tp.2012.102
Niitepõld, K., & Saastamoinen, M. (2017). A candidate gene in an ecological model species: Phosphoglucose isomerase (Pgi) in the Glanville fritillary butterfly (Melitaea cinxia). Annales Zoologici Fennici, 54(1–4), 259–273. https://doi.org/10.5735/086.054.0122
Ossenkopp, K. P., van Anders, S. M., Engeland, C. G., & Kavaliers, M. (2005). Influence of photoperiod and sex on locomotor behavior of meadow voles (Microtus pennsylvanicus) in an automated light–dark ‘anxiety’ test. Psychoneuroendocrinology, 30(9), 869–879. https://doi.org/10.1016/j.psyneuen.2005.05.001
Pellerin, F., Bestion, E., Winandy, L., Di Gesu, L., Richard, M., Aguilée, R., & Cote, J. (2022). Connectivity among thermal habitats buffers the effects of warm climate on life-history traits and population dynamics. Journal of Animal Ecology, 91, 2301–2313. https://doi.org/10.1111/1365-2656.13814
Perrier, J. F., Rasmussen, H. B., Christensen, R. K., & Petersen, A. V. (2013). Modulation of the intrinsic properties of motoneurons by serotonin. Current Pharmaceutical Design, 19(24), 4371–4384. https://doi.org/10.2174/13816128113199990341
Perrin, N., & Mazalov, V. (1999). Dispersal and inbreeding avoidance. The American Naturalist, 154(3), 282–292. https://doi.org/10.1086/303236
Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and ballgown. Nature Protocols, 11(9), 1650–1667. https://doi.org/10.1038/nprot.2016.095
Poveda, J., Sanz, A. B., Fernandez-Fernandez, B., Carrasco, S., Ruiz-Ortega, M., Cannata-Ortiz, P., Ortiz, A., & Sanchez-Niño, M. D. (2017). MXRA5 is a TGF-β1-regulated human protein with anti-inflammatory and anti-fibrotic properties. Journal of Cellular and Molecular Medicine, 21(1), 154–164. https://doi.org/10.1111/jcmm.12953
Prasad, P., Ogawa, S., & Parhar, I. S. (2015). Role of serotonin in fish reproduction. Frontiers in Neuroscience, 9, 195. https://doi.org/10.3389/fnins.2015.00195
Queller, D. C. (2017). Fundamental theorems of evolution. The American Naturalist, 189(4), 345–353. https://doi.org/10.1086/690937
R Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from. http://www.r-project.org
Ramamoorthy, S., Bauman, A. L., Moore, K. R., Han, H., Yang-Feng, T., Chang, A. S., Ganapathy, V., & Blakely, R. D. (1993). Antidepressant- and cocaine-sensitive human serotonin transporter: Molecular cloning, expression, and chromosomal localization. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2542–2546. https://doi.org/10.1073/pnas.90.6.2542
Reid, J. M., & Acker, P. (2022). Properties of phenotypic plasticity in discrete threshold traits. Evolution, 76(2), 190–206. https://doi.org/10.1111/evo.14408
Reppert, S. M., & de Roode, J. C. (2018). Demystifying monarch butterfly migration. Current Biology, 28(17), R1009–R1022. https://doi.org/10.1016/j.cub.2018.02.067
Richard, M., Massot, M., Clobert, J., & Meylan, S. (2012). Litter quality and inflammatory response are dependent on mating strategy in a reptile. Oecologia, 170(1), 39–46. https://doi.org/10.1007/s00442-012-2282-3
Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics (Oxford, England), 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
Rollins, L. A., Richardson, M. F., & Shine, R. (2015). A genetic perspective on rapid evolution in cane toads (Rhinella marina). Molecular Ecology, 24(9), 2264–2276. https://doi.org/10.1111/mec.13184
Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology and Systematics, 38, 231–253.
Saastamoinen, M., Bocedi, G., Cote, J., Legrand, D., Guillaume, F., Wheat, C. W., Fronhofer, E. A., Garcia, C., Henry, R., Husby, A., Baguette, M., Bonte, D., Coulon, A., Kokko, H., Mattysen, E., Niitepõld, K., Nonaka, E., Stevens, V. M., Travis, J. M. J., … Delgado, M. D. M. (2018). Genetics of dispersal. Biological Reviews, 93(1), 574–599. https://doi.org/10.1111/brv.12356
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
St Pourcain, B., Whitehouse, A. O., Ang, W. Q., Warrington, N. M., Glessner, J. T., Wang, K., Timpson, N. J., Evans, D. M., Kemp, J. P., Ring, S. M., McArdle, W. L., Golding, J., Hakonarson, H., Pennell, C. E., & Smith, G. D. (2013). Common variation contributes to the genetic architecture of social communication traits. Molecular Autism, 4(1), 34. https://doi.org/10.1186/2040-2392-4-34
Sterky, F. H., Trotter, J. H., Lee, S.-. J., Recktenwald, C. V., Du, X., Zhou, B., Zhou, P., Schwenk, J., Fakler, B., & Südhof, T. C. (2017). Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 114(7), E1253–E1262. https://doi.org/10.1073/pnas.1621321114
Steyn, V. M., Mitchell, K. A., & Terblanche, J. S. (2016). Dispersal propensity, but not flight performance, explains variation in dispersal ability. Proceedings of the Royal Society B: Biological Sciences, 283(1836), 20160905. https://doi.org/10.1098/rspb.2016.0905
Storey, J., Bass, A., Dabney, A., & Robinson, D. (2021). Qvalue: Q-value estimation for false discovery rate control. R package. Retrieved from. http://github.com/jdstorey/qvalue
Takahashi, J. S. (2017). Transcriptional architecture of the mammalian circadian clock. Nature Reviews Genetics, 18(3), 164–179. https://doi.org/10.1038/nrg.2016.150
Tao, B., Ling, Y., Zhang, Y., Li, S., Zhou, P., Wang, X., Li, B., Jun, Z., Zhang, W., Xu, C., Shi, J., Wang, L., Zhang, L., Zhang, W., & Li, S. (2019). CA10 and CA11 negatively regulate neuronal activity-dependent growth of gliomas. Molecular Oncology, 13(5), 1018–1032. https://doi.org/10.1002/1878-0261.12445
Trefilov, A., Berard, J., Krawczak, M., & Schmidtke, J. (2000). Natal dispersal in rhesus macaques is related to serotonin transporter gene promoter variation. Behavior Genetics, 30(4), 295–301. https://doi.org/10.1023/A:1026597300525
Vallone, D., Frigato, E., Vernesi, C., Foà, A., Foulkes, N. S., & Bertolucci, C. (2007). Hypothermia modulates circadian clock gene expression in lizard peripheral tissues. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 292(1), R160–R166. https://doi.org/10.1152/ajpregu.00370.2006
Vasimuddin, M., Misra, S., Li, H., & Aluru, S. (2019). Efficient architecture-aware acceleration of BWA-MEM for multicore systems. Presented at the IEEE Parallel and Distributed Processing Symposium, Retrieved from. https://ieeexplore.ieee.org/document/8820962
Vellichirammal, N. N., Zera, A. J., Schilder, R. J., Wehrkamp, C., Riethoven, J. J. M., & Brisson, J. A. (2014). De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus. PLoS One, 9(1), e82129. https://doi.org/10.1371/journal.pone.0082129
Walton, A., Sheehan, M. J., & Toth, A. L. (2020). Going wild for functional genomics: RNA interference as a tool to study gene-behavior associations in diverse species and ecological contexts. Hormones and Behavior, 124, 104774. https://doi.org/10.1016/j.yhbeh.2020.104774
Wang, C., Chi, Y., Li, J., Miao, Y., Li, S., Su, W., Jia, S., Chen, Z., Du, S., Zhang, X., Zhou, Y., Wu, W., Zhu, M., Wang, Z., Yang, H., Xu, G., Wang, S., Yang, J., & Guan, Y. (2014). FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology, 59(5), 1779–1790. https://doi.org/10.1002/hep.26945
Warrier, V., Chee, V., Smith, P., Chakrabarti, B., & Baron-Cohen, S. (2015). A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Molecular Autism, 6(1), 1–11. https://doi.org/10.1186/s13229-015-0041-0
Wheat, C. W. (2012). Dispersal genetics: Emerging insights from fruitflies, butterflies, and beyond. In J. Clobert, M. Baguette, T. G. Benton, & J. M. Bullock (Eds.), Dispersal ecology and evolution (p. 497). Oxford University Press.
Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuj, L. E. B., & Nussey, D. H. (2010). An ecologist's guide to the animal model. The Journal of Animal Ecology, 79(1), 13–26. https://doi.org/10.1111/j.1365-2656.2009.01639.x
Wolak, M. E. (2012). Nadiv: An R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods in Ecology and Evolution, 3(5), 792–796. https://doi.org/10.1111/j.2041-210X.2012.00213.x
Wu, H., Denna, T. H., Storkersen, J. N., & Gerriets, V. A. (2019). Beyond a neurotransmitter: The role of serotonin in inflammation and immunity. Pharmacological Research, 140, 100–114. https://doi.org/10.1016/j.phrs.2018.06.015
Yagound, B., West, A. J., Richardson, M. F., Selechnik, D., Shine, R., & Rollins, L. A. (2021). Brain Transcriptome Analysis Reveals Gene Expression Differences Associated with Dispersal Behaviour between Range-Front and Range-Core Populations of Invasive Cane Toads in Australia. (p. 2021.09.27.462079) https://doi.org/10.1101/2021.09.27.462079
Yurchenko, A. A., Recknagel, H., & Elmer, K. R. (2020). Chromosome-level assembly of the common lizard (Zootoca vivipara) genome. Genome Biology and Evolution, evaa161, 1953–1960. https://doi.org/10.1093/gbe/evaa161
Zhang, E. E., Liu, Y., Dentin, R., Pongsawakul, P. Y., Liu, A. C., Hirota, T., Nusimow, D. A., Sun, X., Landais, S., Kodama, Y., Brenner, D. A., Montminy, M., & Kay, S. A. (2010). Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 16(10), 1152–1156. https://doi.org/10.1038/nm.2214
Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824. https://doi.org/10.1038/ng.2310
Zhu, H. J., Appel, D. I., Gründemann, D., & Markowitz, J. S. (2010). Interaction of organic cation transporter 3 (SLC22A3) and amphetamine. Journal of Neurochemistry, 114(1), 142–149. https://doi.org/10.1111/j.1471-4159.2010.06738.x