Rotating disk electrode measurements on low and high loading catalyst layers: Diffusion limitations and application to Pt catalysts supported on porous micrometric carbon xerogel particles designed for proton exchange membrane fuel cells
[en] Innovative fuel cell catalysts are now often being supported on nanostructured materials in order to improve mass transport, contact with the ionomer and active phase distribution. However, to maintain their inner structure, these supports are used as µm-sized particles, which hampers to perform accurate kinetic experiments on rotating disk electrode since a thin layer of catalyst is in principle required. The present study thus aims at checking if accurate measurements remain possible for thick layers of large particles. To do so, oxygen reduction was first performed on a commercial Pt catalyst supported on carbon black; both a typical thin and a thick layer (37 and 370 µgPt cm-2) were used. The impact of the diffusion limitations on the kinetic current was determined. The same measurement protocol was then performed with a catalyst supported on 5 µm particles of a nanostructured carbon (~15 µm layer thickness, 370 µgPt.cm-²). Results and calculation show that, for both thick layers, the kinetic current should be measured at higher potential (1.00 or 1.05 V/ESH) than usual to avoid diffusion limitations. Also, the voltage scanning rate should be lowered to 0.5 or 1 mV.s-1 to decrease the impact of the double layer capacity on the measurements.
Disciplines :
Chemical engineering Materials science & engineering
Job, Nathalie ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique : matériaux et procédés pour la transformation et le stockage d'énergie
Language :
English
Title :
Rotating disk electrode measurements on low and high loading catalyst layers: Diffusion limitations and application to Pt catalysts supported on porous micrometric carbon xerogel particles designed for proton exchange membrane fuel cells
Olu, P., Ohnishi, T., Mochizuki, D., Sugimoto, W., Uncovering the real active sites of ruthenium oxide for the carbon monoxide electro-oxidation reaction on platinum: The catalyst acts as a co-catalyst. Journal of Electroanalytical Chemistry 810 (2018), 109–118, 10.1016/j.jelechem.2017.12.070.
Olu, P., Ohnishi, T., Ayato, Y., Mochizuki, D., Sugimoto, W., Electrochemistry Communications Insights into the enhanced tolerance to carbon monoxide on model tungsten trioxide-decorated polycrystalline platinum electrode. Electrochem Commun 71 (2016), 69–72, 10.1016/j.elecom.2016.08.008.
Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T., Activity benchmarks and requirements for Pt. Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Appl Catal B 56 (2005), 9–35, 10.1016/j.apcatb.2004.06.021.
Stacy, J., Regmi, Y.N., Leonard, B., Fan, M., The recent progress and future of oxygen reduction reaction catalysis: A review. Renew Sust Energ Rev 69 (2017), 401–414, 10.1016/j.rser.2016.09.135.
Mo, R., Zhang, X., Chen, Z., Huang, S., Li, Y., Liang, L., Tian, Z.Q., Shen, P.K., Highly efficient PtCo nanoparticles on Co–N–C nanorods with hierarchical pore structure for oxygen reduction reaction. Int J Hydrogen Energy 46 (2021), 15991–16002, 10.1016/j.ijhydene.2021.02.119.
Zhang, X., Zhang, X., Zhao, S., Wang, Y.Q., Lin, X.u., Tian, Z.Q., Shen, P.K., Jiang, S.P., Precursor modulated active sites of nitrogen doped graphene-based carbon catalysts via one-step pyrolysis method for the enhanced oxygen reduction reaction. Electrochim Acta, 370, 2021, 137712, 10.1016/j.electacta.2021.137712.
Brouzgou, A., Song, S.Q., Tsiakaras, P., Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects. Appl Catal B 127 (2012), 371–388, 10.1016/j.apcatb.2012.08.031.
Dubau, L., Durst, J., Maillard, F., Guétaz, L., Chatenet, M., André, J., Rossinot, E., Electrochimica Acta Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “ hollow ” Pt nanoparticles induced by the Kirkendall effect. Electrochim Acta 56 (2011), 10658–10667, 10.1016/j.electacta.2011.03.073.
Guerrero, N., Cisneros, M., Gervasio, D., Francisco, J., Robles, P., Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renew Sust Energ Rev 52 (2015), 897–906, 10.1016/j.rser.2015.07.157.
Asset, T., Job, N., Busby, Y., Crisci, A., Martin, V., Stergiopoulos, V., Bonnaud, C., Serov, A., Atanassov, P., Chattot, R., Dubau, L., Maillard, F., Porous hollow PtNi/C electrocatalysts: Carbon support considerations to meet performance and stability requirements. ACS Catal 8 (2018), 893–903, 10.1021/acscatal.7b03539.
Liu, Z.Y., Zhang, J.L., Yu, P.T., Zhang, J.X., Makharia, R., More, K.L., Stach, E.A., Transmission Electron Microscopy observation of corrosion behaviors of platinized carbon blacks under thermal and electrochemical conditions. J Electrochem Soc., 157, 2010, B906, 10.1149/1.3391737.
Castanheira, L., Silva, W.O., Lima, F.H.B., Crisci, A., Dubau, L., Maillard, F., Carbon corrosion in proton-exchange membrane fuel cells: Effect of the carbon structure, the degradation protocol, and the gas atmosphere. ACS Catal 5 (2015), 2184–2194, 10.1021/cs501973j.
Zhai, Y., Zhang, H., Xing, D., Shao, Z.G., The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test. J Power Sources 164 (2007), 126–133, 10.1016/j.jpowsour.2006.09.069.
Sharma, S., Pollet, B.G., Support materials for PEMFC and DMFC electrocatalysts — A review. J Power Sources 208 (2012), 96–119, 10.1016/j.jpowsour.2012.02.011.
Samad, S., Loh, K.S., Wong, W.Y., Lee, T.K., Sunarso, J., Chong, S.T., Wan Daud, W.R., Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrog Energy 43:16 (2018), 7823–7854.
Maillard, F., Simonov, P.A., Carbon Materials as Supports for Fuel Cell Electrocatalysts, In: Carbon Materials for Catalysis, 2009, John Wiley & sons 9780470178850, 429–480.
Banham, D., Feng, F., Fürstenhaupt, T., Pei, K., Ye, S., Birss, V., Novel mesoporous carbon supports for PEMFC catalysts. Catalysts 15 (2015), 1046–1067, 10.3390/catal5031046.
Shahgaldi, S., Hamelin, J., Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94 (2015), 705–728, 10.1016/j.carbon.2015.07.055.
Maillard, F., Job, N., Chatenet, M., Approaches to synthesize carbon-supported platinum-based electrocatalysts for proton-exchange membrane fuel cells. Suib, S., (eds.) New and Future Developments in Catalysis. Batteries, Hydrogen Storage and Fuel Cells, 1st edition, 2013, Elsevier 9780444538802, 407–428.
Job, N., Marie, J., Lambert, S., Berthon-Fabry, S., Achard, P., Carbon xerogels as catalyst supports for PEM fuel cell cathode. Energy Convers Manag 49 (2008), 2461–2470, 10.1016/j.enconman.2008.03.025.
Job, N., Heinrichs, B., Lambert, S.D., Pirard, J., Colomer, J.F., Vertruyen, B., Marien, J., Carbon xerogels as catalyst supports: study of mass transfer. AIChE J 52 (2006), 2663–2676, 10.1002/aic.
Piedboeuf, M.-L.-C., Léonard, A.F., Traina, K., Job, N., Influence of the textural parameters of resorcinol – formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids Surf 471 (2015), 124–132, 10.1016/j.colsurfa.2015.02.014.
Garsany, Y., Baturina, O.A., Swider-Lyons, K.E., Kocha, S.S., Experimental methods for quantifying the activity of platinum electrocatalysts for the oxygen reduction reaction. Anal Chem 82 (2010), 6321–6328, 10.1021/ac100306c.
Mayrhofer, K.J.J., Strmcnik, D., Blizanac, B.B., Stamenkovic, V., Arenz, M., Markovic, N.M., Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53 (2008), 3181–3188, 10.1016/j.electacta.2007.11.057.
Shinozaki, K., Zack, J.W., Pylypenko, S., Pivovar, B.S., Kocha, S.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique II. Influence of ink formulation, catalyst layer uniformity and thickness, J Electrochem Soc 162 (2015), 1384–1396, 10.1149/2.0551512jes.
Shinozaki, K., Zack, J.W., Richards, R.M., Pivovar, B.S., Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J Electrochem Soc 162 (2015), F1144–F1158, 10.1149/2.1071509jes.
Kocha, S.S., Zack, J.W., Alia, S.M., Neyerlin, K.C., Pivovar, B.S., Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans 50 (2013), 1475–1485, 10.1149/05002.1475ecst.
Garsany, Y., Ge, J., St-Pierre, J., Rocheleau, R., Swider-Lyons, K.E., Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J Electrochem Soc 161 (2014), F628–F640, 10.1149/2.036405jes.
Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.N., Béguin, F., Pirard, J.P., Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials. Carbon 43 (2005), 2481–2494, 10.1016/j.carbon.2005.04.031.
Zubiaur, A., Job, N., Streamlining of the synthesis process of Pt/carbon xerogel electrocatalysts with high Pt loading for the oxygen reduction reaction in proton exchange membrane fuel cells applications. Appl Catal B 225 (2018), 364–378, 10.1016/j.apcatb.2017.11.059.
Lambert, S., Job, N., D'Souza, L., Pereira, M.F.R., Pirard, R., Heinrichs, B., Figueiredo, J.L., Pirard, J.P., Regalbuto, J.R., Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by thestrong electrostatic adsorption method. J Catal 261 (2009), 23–33, 10.1016/j.jcat.2008.10.014.
Job, N., Lambert, S., Chatenet, M., Gommes, C.J., Maillard, F., Berthon-Fabry, S., Regalbuto, J.R., Pirard, J.-P., Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method. Catal Today 150 (2010), 119–127, 10.1016/j.cattod.2009.06.022.
Ouattara-Brigaudet, M., Berthon-Fabry, S., Beauger, C., Chatenet, M., Job, N., Sennour, M., Achard, P., Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode. Int J Hydrog Energy 37 (2012), 9742–9757, 10.1016/j.ijhydene.2012.03.085.
Job, N., Chatenet, M., Berthon-Fabry, S., Hermans, S., Maillard, F., Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: Avoid chloride-based Pt salts!. J Power Sources 240 (2013), 294–305, 10.1016/j.jpowsour.2013.03.188.
Maillard, F., Eikerling, M., Cherstiouk, O.V., Schreier, S., Savinova, E., Stimming, U., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation: The role of surface mobility. Faraday Discuss 125 (2004), 357–377, 10.1039/b303911k.
Maillard, F., Savinova, E.R., Stimming, U., CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects. J Electroanal Chem 599 (2007), 221–232, 10.1016/j.jelechem.2006.02.024.
Trasatti, S., Petrii, O.A., Real surface area measurements in electrochemistry. J Electroanal Chem 327 (1992), 353–376, 10.1016/0022-0728(92)80162-W.
Maillard, F., Schreier, S., Hanzlik, M., Savinova, E.R., Weinkauf, S., Stimming, U., Federation, R., Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys Chem Chem Phys 7 (2005), 385–393, 10.1039/B411377B.
Newman, J., Schmidt, Number correction for the rotating disk. J Phys Chem 70 (1966), 1327–1328, 10.1021/j100876a509.
Gileadi, E., Kirowa-Eisner, E., Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion. Corros 47 (2005), 3068–3085, 10.1016/j.corsci.2005.05.044.
A.J. Bard, L.R. Faulkner. Electrochemical methods: Fundamentals and applications. John Wiley & sons. 2nd ed. ISBN 0-471-04372-9. 580-632.
G.F. Froment, K.B. Bischoff, Chemical reactor analysis and design, 047150440, 2nd edition, John Wiley & sons, 10:, 1990, pp. 142–148.
L.R. Radovic. Physicochemical properties of carbon materials: a brief overview, In: Carbon Materials for Catalysis, P. Serp & J.-L. Figueiredo (Eds). John Wiley & sons. 2009. ISBN:9780470178850. 1–44.
Sethuraman, V.A., Khan, S., Jur, J.S., Haug, A.T., Weidner, J.W., Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in nafion membranes. Electrochim Acta 54 (2009), 6850–6860, 10.1016/j.electacta.2009.06.068.
Ferrell, R.T., Himmelblau, D.M., Diffusion coefficients of nitrogen and oxygen in water. J Chem Eng Data 12 (1967), 111–115, 10.1021/je60032a036.
N.A. Lange. Lange's Handbook of Chemistry. 1969.
Liang, H.W., Wei, W., Wu, Z.S., Feng, X., Müllen, K., Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J Am Chem Soc 135 (2013), 16002–16005, 10.1021/ja407552k.
Kumar, S.M.S., Hidyatai, N., Herrero, J.S., Irusta, S., Scott, K., Efficient tuningof the Pt nano-particle mono-dispersion on Vulcan XC-72R by selective pre-treatment and electrochemical evaluation of hydrogen oxidation and oxygen reduction reactions. Int J Hydrog Energy 36 (2011), 5453–5465, 10.1016/j.ijhydene.2011.01.124.
Zhang, L., Li, H., Zhang, J., Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution. J Power Sources 255 (2014), 242–250, 10.1016/j.jpowsour.2014.01.042.
Ammam, M., Easton, E.B., Oxygen reduction activity of binary PtMn/C, ternary PtMnX/C (X = Fe Co, Ni, Cu, Mo and Sn) and quaternary PtMnCuX/C (X = Fe Co, Ni, and Sn) and PtMnMoX/C (X = Fe Co, Ni, Cu and Sn) alloy catalysts. J Power Sources 236 (2013), 311–320, 10.1016/j.jpowsour.2013.02.029.
Antoine, O., Durand, R., RRDE study of oxygen reduction on Pt nanoparticles inside Nafion: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 30 (2000), 839–844, 10.1023/A:1003999818560.
Shi, Y.-H., Vidya Sagar, G., Lin, S.D., Effect of electrode Pt loading on the Oxygen Reduction Reaction evaluated by rotating disk electrode and its implication on the reaction kinetics. J Phys Chem C 112 (2008), 123–130, 10.1021/jp071807h.
Job, N., Pirard, R., Marien, J., Pirard, J.P., Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42 (2004), 619–628, 10.1016/j.carbon.2003.12.072.
Treimer, S., Tang, A., Johnson, D.C., A consideration of the application of Koutecky-Levich plots in the diagnoses of charge-transfer mechanisms at Rotated Disk Electrodes. Electroanalysis. 14 (2002), 165–171 https://10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6.