cognitive motor dissociation; consciousness; covert awareness; functional locked-in; minimally conscious state; non-behavioral MCS; unresponsive wakefulness syndrome; vegetative state
Abstract :
[en] BACKGROUND: With the emergence of Brain Computer Interfaces (BCI), clinicians have been facing a new group of patients with severe acquired brain injury who are unable to show any behavioral sign of consciousness but respond to active neuroimaging or electrophysiological paradigms. However, even though well documented, there is still no consensus regarding the nomenclature for this clinical entity. OBJECTIVES: This systematic review aims to 1) identify the terms used to indicate the presence of this entity through the years, and 2) promote an informed discussion regarding the rationale for these names and the best candidates to name this fascinating disorder. METHODS: The Disorders of Consciousness Special Interest Group (DoC SIG) of the International Brain Injury Association (IBIA) launched a search on Pubmed and Google scholar following PRISMA guidelines to collect peer-reviewed articles and reviews on human adults (>18 years) published in English between 2006 and 2021. RESULTS: The search launched in January 2021 identified 4,089 potentially relevant titles. After screening, 1,126 abstracts were found relevant. Finally, 161 manuscripts were included in our analyses. Only 58% of the manuscripts used a specific name to discuss this clinical entity, among which 32% used several names interchangeably throughout the text. We found 25 different names given to this entity. The five following names were the ones the most frequently used: covert awareness, cognitive motor dissociation, functional locked-in, non-behavioral MCS (MCS(*)) and higher-order cortex motor dissociation. CONCLUSION: Since 2006, there has been no agreement regarding the taxonomy to use for unresponsive patients who are able to respond to active neuroimaging or electrophysiological paradigms. Developing a standard taxonomy is an important goal for future research studies and clinical translation. We recommend a Delphi study in order to build such a consensus.
Disciplines :
Neurosciences & behavior
Author, co-author :
Schnakers, Caroline ; Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA,
Bauer, Chase; College of Osteopathic Medicine, Western University of Health Sciences, Pomona,
Formisano, Rita; IRCCS Santa Lucia Foundation, Rome, Italy.
Llorens, Roberto; Vithas Neuro Rehab Human Brain, Fundación Hospitales Vithas, Valencia, Spain. ; Neurorehabilitation and Brain Research Group, Instituto de Investigación e
Lejeune, Nicolas ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Farisco, Michele; Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden. ; Science and Society Unit, Biogem, Biology and Molecular Genetics Research
Teixeira, Liliana; Center for Innovative Care and Health Technology, School of Health Sciences,
Morrissey, Ann-Marie; Ageing Research Centre, School of Allied Health, Health Research Institute,
De Marco, Sabrina; Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba,
Veeramuthu, Vigneswaran; Subang Jaya Medical Center, Subang Jaya, Malaysia.
Ilina, Kseniya; Research Center of Neurology, Moscow, Russia. ; Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow,
Edlow, Brian L; Massachusetts General Hospital, Harvard Medical School, Boston, MA, United
Gosseries, Olivia ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Zandalasini, Matteo; Unità Spinale, Neuroriabilitazione e Medicina Riabilitativa Intensiva,
De Bellis, Francesco; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.
Thibaut, Aurore ; Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Estraneo, Anna; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy. ; Neurology Unit, SM della Pietà General Hospital, Nola, Italy.
Annen J. Laureys S. Gosseries O. (2020). Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. Handb. Clin. Neurol. 168, 137–152. 10.1016/B978-0-444-63934-9.00011-132164848
Bruno M. A. Vanhaudenhuyse A. Thibaut A. Moonen G. Laureys S. (2011). From unresponsive wakefulness to minimally conscious PLUS and functional lockedin syndromes: recent advances in our understanding of disorders of consciousness. J. Neurol. 258, 1373–1384. 10.1007/s00415-011-6114-x21674197
Edlow B. L. Chatelle C. Spencer C. A. Chu C. J. Bodien Y. G. O'Connor K. L. et al. (2017). Early detection of consciousness in patients with acute severe traumatic brain injury. Brain 140, 2399–2414. 10.1093/brain/awx17629050383
Fernández-Espejo D. Rossit S. Owen A. M. (2015). A thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients. JAMA Neurol. 72, 1442–1450. 10.1001/jamaneurol.2015.261426501399
Formisano R. D'Ippolito M. Catani S. (2013). Functional locked-in syndrome as recovery phase of vegetative state. Brain Inj. 27, 1332. 10.3109/02699052.2013.80955523927719
Giacino J. Ashwal S. Childs N. Cranford R. Jennett B. Katz D. I. et al. (2002). The minimally conscious state: definition and diagnostic criteria. Neurology 58, 349–353. 10.1212/WNL.58.3.34912434799
Giacino J. T. Katz D. I. Schiff N. D. Whyte J. Ashman E. J. Ashwal S. et al. (2018). Comprehensive systematic review update summary: disorders of consciousness: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology; the american congress of rehabilitation medicine; and the national institute on disability, independent living, and rehabilitation research. Neurology 91, 461–470. 10.1212/WNL.000000000000592830098792
Giacino J. T. Schnakers C. Rodriguez-Moreno D. Kalmar K. Schiff N. Hirsch J. (2009). Behavioral assessment in patients with disorders of consciousness: gold standard or fool's gold? Prog. Brain Res. 177, 33–48. 10.1016/S0079-6123(09)17704-X19818893
Gosseries O. Zasler N. D. Laureys S. (2014). Recent advances in disorders of consciousness: focus on the diagnosis. Brain Inj. 28, 1141–1150. 10.3109/02699052.2014.92052225099018
Kondziella D. Bender A. Diserens K. van Erp W. Estraneo A. Formisano R. et al. (2020). European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 27, 741–756. 10.1111/ene.1415132090418
Kondziella D. Friberg C. K. Frokjaer V. G. Fabricius M. Møller K. (2016). Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 87, 485–492. 10.1136/jnnp-2015-31095826139551
Laureys S. Schiff N. D. (2012). Coma and consciousness: paradigms (re)framed by neuroimaging. Neuroimage 61, 478–491. 10.1016/j.neuroimage.2011.12.04122227888
Liberati A. Altman D. G. Tetzlaff J. Mulrow C. Gøtzsche P. C. Ioannidis J. P. et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700. 10.1136/bmj.b270019622552
Monti M. M. Schnakers C. (2022). Flowchart for implementing advanced imaging and electrophysiology in patients with disorders of consciousness: to fMRI or not to fMRI? Neurology 98, 452–459. 10.1212/WNL.000000000020003835256484
Monti M. M. Vanhaudenhuyse A. Coleman M. R. Boly M. Pickard J. D. Tshibanda L. et al. (2010). Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362, 579–589. 10.1056/NEJMoa090537020496463
Owen A. M. (2015). Using functional magnetic resonance imaging and electroencephalography to detect consciousness after severe brain injury. Handb. Clin. Neurol. 127, 277–293. 10.1016/B978-0-444-52892-6.00018-025702223
Owen A. M. Coleman M. R. Boly M. Davis M. H. Laureys S. Pickard J. D. (2006). Detecting awareness in the vegetative state. Science 313, 1402. 10.1126/science.113019716959998
Owen A. M. Coleman M. R. Boly M. Davis M. H. Laureys S. Pickard J. D. (2007). Using functional magnetic resonance imaging to detect covert awareness in the vegetative state. Arch. Neurol. 64, 1098–1102. 10.1001/archneur.64.8.109817698699
Schiff N. D. (2015). Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 72, 1413–1415. 10.1001/jamaneurol.2015.289926502348
Schnakers C. (2020). Update on diagnosis in disorders of consciousness. Expert Rev. Neurother. 20, 997–1004. 10.1080/14737175.2020.179664132700583
Schnakers C. Hirsch M. Noé E. Llorens R. Lejeune N. Veeramuthu V. et al. (2020). Covert cognition in disorders of consciousness: a meta-analysis. Brain Sci. 10, 930. 10.3390/brainsci1012093033276451
The Multi-Society Task Force on Persistent Vegetative State (1994). Medical aspects of the persistent vegetative state. N. Engl. J. Med. 330, 1499–1508. 10.1056/NEJM1994052633021077818633
Thibaut A. Bodien Y. G. Laureys S. Giacino J. T. (2020). Minimally conscious state “plus”: diagnostic criteria and relation to functional recovery. J. Neurol. 267, 1245–1254. 10.1007/s00415-019-09628-y32193597
Young M. J. Edlow B. L. (2021). The quest for covert consciousness: bringing neuroethics to the bedside. Neurology 96, 893–896. 10.1212/WNL.000000000001173433653901
Zasler N. D. Aloisi M. Contrada M. Formisano R. (2019). Disorders of consciousness terminology: history, evolution and future directions. Brain Inj. 33, 1684–1689. 10.1080/02699052.2019.165682131498704