Article (Scientific journals)
Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index.
Magliacano, Alfonso; Liuzzi, Piergiuseppe; Formisano, Rita et al.
2022In Brain Sciences, 13 (1), p. 51
Peer Reviewed verified by ORBi
 

Files


Full Text
brainsci-13-00051.pdf
Author postprint (996.25 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
coma recovery scale-revised; disorders of consciousness; machine learning; prognosis; rehabilitation; General Neuroscience
Abstract :
[en] Prognosis of prolonged Disorders of Consciousness (pDoC) is influenced by patients' clinical diagnosis and Coma Recovery Scale-Revised (CRS-R) total score. We compared the prognostic accuracy of a novel Consciousness Domain Index (CDI) with that of clinical diagnosis and CRS-R total score, for recovery of full consciousness at 6-, 12-, and 24-months post-injury. The CDI was obtained by a combination of the six CRS-R subscales via an unsupervised machine learning technique. We retrospectively analyzed data on 143 patients with pDoC (75 in Minimally Conscious State; 102 males; median age = 53 years; IQR = 35; time post-injury = 1-3 months) due to different etiologies enrolled in an International Brain Injury Association Disorders of Consciousness Special Interest Group (IBIA DoC-SIG) multicenter longitudinal study. Univariate and multivariate analyses were utilized to assess the association between outcomes and the CDI, compared to clinical diagnosis and CRS-R. The CDI, the clinical diagnosis, and the CRS-R total score were significantly associated with a good outcome at 6, 12 and 24 months. The CDI showed the highest univariate prediction accuracy and sensitivity, and regression models including the CDI provided the highest values of explained variance. A combined scoring system of the CRS-R subscales by unsupervised machine learning may improve clinical ability to predict recovery of consciousness in patients with pDoC.
Disciplines :
Neurosciences & behavior
Author, co-author :
Magliacano, Alfonso ;  IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy ; Polo Specialistico Riabilitativo, Fondazione Don Carlo Gnocchi, 83054 Sant'Angelo dei Lombardi, Italy
Liuzzi, Piergiuseppe ;  IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy ; Scuola Superiore Sant'Anna, Istituto di BioRobotica, 56025 Pontedera, Italy
Formisano, Rita ;  Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
Grippo, Antonello ;  IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy
Angelakis, Efthymios;  Neurosurgery Department, University of Athens Medical School, 11527 Athens, Greece
Thibaut, Aurore  ;  Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Gosseries, Olivia  ;  Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group
Lamberti, Gianfranco ;  Neurorehabilitation and Vegetative State Unit E. Viglietta, 12100 Cuneo, Italy
Noé, Enrique ;  IRENEA-Instituto de Rehabilitación Neurológica, Fundación Hospitales Vithas, 46011 Valencia, Spain
Bagnato, Sergio ;  Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, 90015 Cefalù, Italy
Edlow, Brian L ;  Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
Lejeune, Nicolas  ;  Université de Liège - ULiège > GIGA > GIGA Consciousness - Coma Science Group ; CHN William Lennox, 1340 Ottignies, Belgium
Veeramuthu, Vigneswaran ;  Division of Clinical Neuropsychology, Thomson Hospital Kota Damansara, Petaling Jaya 47810, Malaysia
Trojano, Luigi ;  Department of Psychology, University of Campania L. Vanvitelli, 81100 Caserta, Italy
Zasler, Nathan;  Concussion Care Centre of Virginia, Ltd., Richmond, VA 23233, USA
Schnakers, Caroline  ;  Université de Liège - ULiège > Unités de recherche interfacultaires > GIGA-CRC In vivo Imaging (Centre de Recherche du Cyclotron) ; Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA
Bartolo, Michelangelo;  Neurorehabilitation Unit, HABILITA Zingonia/Ciserano, 24040 Bergamo, Italy
Mannini, Andrea ;  IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy
Estraneo, Anna;  IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy ; Polo Specialistico Riabilitativo, Fondazione Don Carlo Gnocchi, 83054 Sant'Angelo dei Lombardi, Italy
IBIA DoC-SIG
More authors (10 more) Less
Language :
English
Title :
Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index.
Publication date :
27 December 2022
Journal title :
Brain Sciences
eISSN :
2076-3425
Publisher :
MDPI AG, Switzerland
Volume :
13
Issue :
1
Pages :
51
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 02 March 2023

Statistics


Number of views
88 (3 by ULiège)
Number of downloads
30 (0 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi