Paper published in a book (Scientific congresses and symposiums)
String attractors of fixed points of k-bonacci-like morphisms
Gheeraert, France; Stipulanti, Manon; Giuseppe Romana
2023In Frid, Anna; Mercaş, Robert (Eds.) Combinatorics on Words. WORDS 2023
Peer reviewed
 

Files


Full Text
main.pdf
Author preprint (466.88 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Morphic sequences; Fibonacci word; Numeration systems; String attractors; Parry numbers
Abstract :
[en] Firstly studied by Kempa and Prezza in 2018 as the cement of text compression algorithms, string attractors have become a compelling object of theoretical research within the community of combinatorics on words. In this context, they have been studied for several families of finite and infinite words. In this paper, we obtain string attractors of prefixes of particular infinite words generalizing k-bonacci words (including the famous Fibonacci word) and obtained as fixed points of k-bonacci-like morphisms. In fact, our description involves the numeration systems classically derived from the considered morphisms.
Disciplines :
Mathematics
Author, co-author :
Gheeraert, France  ;  Université de Liège - ULiège > Mathematics
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Giuseppe Romana;  UniPa - Università degli Studi di Palermo [IT] > Dipartimento di Matematica e Informatica
Language :
English
Title :
String attractors of fixed points of k-bonacci-like morphisms
Publication date :
31 May 2023
Event name :
WORDS 2023
Event place :
Umeå, Sweden
Event date :
12-16 juin 2023
Audience :
International
Main work title :
Combinatorics on Words. WORDS 2023
Editor :
Frid, Anna
Mercaş, Robert
Publisher :
Springer, Cham, Switzerland
ISBN/EAN :
978-3-031-33179-4
Collection name :
Lecture Notes in Computer Science
Collection ISSN :
0302-9743
Peer reviewed :
Peer reviewed
Funding number :
F.R.S.-FNRS - Fonds de la Recherche Scientifique; MIUR project PRIN 2017 ADASCOML – 2017K7XPAN
Available on ORBi :
since 27 February 2023

Statistics


Number of views
64 (18 by ULiège)
Number of downloads
33 (3 by ULiège)

Scopus citations®
 
4
Scopus citations®
without self-citations
1
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi