[en] BACKGROUND: Type 1 diabetes is associated with accelerated vascular aging and advanced atherosclerosis resulting in increased rates of cardiovascular disease and premature death. We evaluated associations between Leukocyte telomere length (LTL), allelic variations (SNPs) in LTL-related genes and the incidence of coronary heart disease (CHD) in adults with long-standing type 1 diabetes. METHODS: We assessed associations of LTL, measured at baseline by RT-PCR, and of SNPs in 11 LTL-related genes with the risk of coronary heart disease (CHD: myocardial infarction or coronary revascularization) and all-cause death during follow-up in two multicenter French-Belgian prospective cohorts of people with long-standing type 1 diabetes. RESULTS: In logistic and Cox analyses, the lowest tertile of LTL distribution (short telomeres) at baseline was associated with the prevalence of myocardial infarction at baseline and with increased risk of CHD (Hazard ratio 3.14 (1.39-7.70), p = 0.005, for shorter vs longer tertile of LTL) and all-cause death (Hazard ratio 1.63 (95% CI 1.04-2.55), p = 0.03, for shorter vs combined intermediate and longer tertiles of LTL) during follow-up. Allelic variations in six genes related to telomere biology (TERC, NAF1, TERT, TNKS, MEN1 and BICD1) were also associated with the incidence of CHD during follow-up. The associations were independent of sex, age, duration of diabetes, and a range of relevant confounding factors at baseline. CONCLUSIONS: Our results suggest that short LTL is an independent risk factor for CHD in people with type 1 diabetes.
Sanchez, Manuel; INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université ; UFR de Médecine, Université Paris Cité, Paris, France. manuel.sanchez@aphp.fr. ; Department of Geriatrics, Assistance Publique - Hôpitaux de Paris, Bichat
Kannengiesser, Caroline; UFR de Médecine, Université Paris Cité, Paris, France. ; Department of Genetics, Assistance Publique - Hôpitaux de Paris, DHU FIRE, Bichat
Hoang, Sophie; Department of Geriatrics, Charles-Foix University Hospital, Vitry sur Seine,
Potier, Louis; INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université ; UFR de Médecine, Université Paris Cité, Paris, France. ; Department of Diabetology, Endocrinology and Nutrition, Assistance Publique -
Scheen, André ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Gautier, Jean-François; INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université ; UFR de Médecine, Université Paris Cité, Paris, France. ; Department of Diabetology, Endocrinology and Nutrition, Assistance Publique -
Hadjadj, Samy; Institut du Thorax, INSERM, CNRS, CHU Nantes, Université de Nantes, Nantes,
Marre, Michel; Clinique Ambroise Paré, Neuilly-sur-Seine, France.
Roussel, Ronan; INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker-Enfants Malades, Université ; UFR de Médecine, Université Paris Cité, Paris, France. ; Department of Diabetology, Endocrinology and Nutrition, Assistance Publique -
Mohammedi, Kamel; INSERM U1034, Bordeaux University and Hospital, Bordeaux, France.
Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287:2570–81.
Diabetes Control and Complications Trial (DCCT) /Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: The DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39:686–93.
Lind M, Svensson A-M, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, Dahlqvist S, Clements M, Rosengren A. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82.
Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569–73.
Campisi J, Robert L. Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol. 2014;39:45–61.
Minamino T, Komuro I. Role of telomeres in vascular senescence. Front Biosci. 2008;13:2971–9.
Willeit P, Willeit J, Brandstätter A, Ehrlenbach S, Mayr A, Gasperi A, Weger S, Oberhollenzer F, Reindl M, Kronenberg F, Kiechl S. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30:1649–56.
Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349: g4227.
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.
Masi S, D’Aiuto F, Cooper J, Salpea K, Stephens JW, Hurel SJ, Deanfield JE, Humphries SE. Telomere length, antioxidant status and incidence of ischaemic heart disease in type 2 diabetes. Int J Cardiol. 2016;216:159–64.
Fyhrquist F, Tiitu A, Saijonmaa O, Forsblom C, Groop P-H. Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J Intern Med. 2010;267:278–86.
Sanchez M, Hoang S, Kannengiesser C, Potier L, Hadjadj S, Marre M, Roussel R, Velho G, Mohammedi K. Leukocyte telomere length, DNA oxidation, and risk of lower-extremity amputation in patients with long-standing type 1 diabetes. Diabetes Care. 2020;43:828–34.
Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I, Broer L, Nyholt DR, Mateo Leach I, Salo P, Hägg S, Matthews MK, Palmen J, Norata GD, O’Reilly PF, Saleheen D, Amin N, Balmforth AJ, Beekman M, de Boer RA, Böhringer S, Braund PS, Burton PR, de Craen AJM, Denniff M, Dong Y, Douroudis K, Dubinina E, Eriksson JG, Garlaschelli K, Guo D, Hartikainen A-L, Henders AK, Houwing-Duistermaat JJ, Kananen L, Karssen LC, Kettunen J, Klopp N, Lagou V, van Leeuwen EM, Madden PA, Mägi R, Magnusson PKE, Männistö S, McCarthy MI, Medland SE, Mihailov E, Montgomery GW, Oostra BA, Palotie A, Peters A, Pollard H, Pouta A, Prokopenko I, Ripatti S, Salomaa V, Suchiman HED, Valdes AM, Verweij N, Viñuela A, Wang X, Wichmann H-E, Widen E, Willemsen G, Wright MJ, Xia K, Xiao X, van Veldhuisen DJ, Catapano AL, Tobin MD, Hall AS, Blakemore AIF, van Gilst WH, Zhu H, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Talmud PJ, Pedersen NL, Perola M, Ouwehand W, Kaprio J, Martin NG, van Duijn CM, Hovatta I, Gieger C, Metspalu A, Boomsma DI, Jarvelin M-R, Slagboom PE, Thompson JR, Spector TD, van der Harst P, Samani NJ, CARDIoGRAM consortium. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genetics. 2013;45:422–7.
Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366:662–4.
Yeh JK, Lin MH, Wang CY. Telomeres as therapeutic targets in heart disease. JACC Basic Transl Sci. 2019;4:855–65.
Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G, Sert C, Dusselier L, Kahal Z, Chaillous L, Halimi S, Muller A, Sackmann H, Bauduceau B, Bled F, Passa P, Alhenc-Gelas F. Contribution of genetic polymorphism in the renin-angiotensin system to the development of renal complications in insulin-dependent diabetes: Genetique de la Nephropathie Diabetique (GENEDIAB) study group. J Clin Invest. 1997;99:1585–95.
Hadjadj S, Pean F, Gallois Y, Passa P, Aubert R, Weekers L, Rigalleau V, Bauduceau B, Bekherraz A, Roussel R, Dussol B, Rodier M, Marechaud R, Lefebvre PJ, Marre M. Different patterns of insulin resistance in relatives of type 1 diabetic patients with retinopathy or nephropathy: the Genesis France-Belgium Study. Diabetes Care. 2004;27:2661–8.
Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37: e21.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.
Pfaffl MW. Quantification strategies in real-time RT–PCR (RT-qPCR). In: Filion M, editor. Quantitative real-time PCR in applied microbiology. Norfolk: Caister Academic Press; 2012.
Codd V, Mangino M, van der Harst P, Braund PS, Kaiser M, Beveridge AJ, Rafelt S, Moore J, Nelson C, Soranzo N, Zhai G, Valdes AM, Blackburn H, Mateo Leach I, de Boer RA, Kimura M, Aviv A, Goodall AH, Ouwehand W, van Veldhuisen DJ, van Gilst WH, Navis G, Burton PR, Tobin MD, Hall AS, Thompson JR, Spector T, Samani NJ. Common variants near TERC are associated with mean telomere length. Nat Genet. 2010;42:197–9.
Crocco P, Barale R, Rose G, Rizzato C, Santoro A, De Rango F, Carrai M, Fogar P, Monti D, Biondi F, Bucci L, Ostan R, Tallaro F, Montesanto A, Zambon CF, Franceschi C, Canzian F, Passarino G, Campa D. Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology. 2015;16:353–64.
Mangino M, Brouilette S, Braund PS, Tirmizi N, Vasa-Nicotera M, Thompson JR, Samani NJ. A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Hum Mol Genet. 2008;17:2518–23.
Mirabello L, Yu K, Kraft P, De Vivo I, Hunter DJ, Prescott J, Wong JYY, Chatterjee N, Hayes RB, Savage SA. The association of telomere length and genetic variation in telomere biology genes. Hum Mutat. 2010;31:1050–8.
Scheller Madrid A, Rode L, Nordestgaard BG, Bojesen SE. Short Telomere length and ischemic heart disease: observational and genetic studies in 290,022 individuals. Clin Chem. 2016;62:1140–9.
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509.
Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, West of Scotland Coronary Prevention Study Group. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland primary prevention study: a nested case-control study. Lancet. 2007;369:107–14.
Epel ES, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, Seeman TE. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2008;1:81–8.
D’Mello MJJ, Ross SA, Briel M, Anand SS, Gerstein H, Paré G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: systematic review and meta-analysis. Circ Cardiovasc Genet. 2015;8:82–90.
Pejenaute A, Cortes A, Marques J, Montero L, Beloqui O, Fortuno A, Marti A, Orbe J, Zalba G. NADPH oxidase overactivity underlies telomere shortening in human atherosclerosis. Int J Mol Sci. 2020;21:1434.
Cafueri G, Parodi F, Pistorio A, Bertolotto M, Ventura F, Gambini C, Bianco P, Dallegri F, Pistoia V, Pezzolo A, Palombo D. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition. PLoS ONE. 2012;7: e35312.
Blackburn EH, Epel ES, Lin J. Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350:1193–8.
Huang YC, Wang CY. Telomere attrition and clonal hematopoiesis of indeterminate potential in cardiovascular disease. Int J Mol Sci. 2021;22:9867.
McAlpine CS, Swirski FK. Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res. 2016;119:131–41.
Calvert PA, Liew TV, Gorenne I, Clarke M, Costopoulos C, Obaid DR, O’Sullivan M, Shapiro LM, McNab DC, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR. Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity. Arterioscler Thromb Vasc Biol. 2011;31:2157–64.
Li Y, Xiang C, Shen N, Deng L, Luo X, Yuan P, Ji Z, Li J, Cheng L. Functional polymorphisms on chromosome 5p15.33 disturb telomere biology and confer the risk of non-small cell lung cancer in Chinese population. Mol Carcinog. 2019;58:913–21.
Zee RY, Ridker PM, Chasman DI. Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease: the Women’s Genome Health Study. Clin Chim Acta. 2011;412:199–202.
Paik JK, Kang R, Cho Y, Shin M-J. Association between genetic variations affecting mean telomere length and the prevalence of hypertension and coronary heart disease in Koreans. Clin Nutr Res. 2016;5:249–60.
Perez-Rivera JA, Pabon-Osuna P, Cieza-Borrella C, Lugo-Godoy C, Martin-Herrero F, Gonzalez-Porras JR, Sanchez-Fernandez PL, Gonzalez-Sarmiento R. The role of the TERC-63G>A and TERT-1327C>T telomerase polymorphisms in the study of men with acute coronary syndrome. Minerva Cardioangiol. 2015;63:467–74.
Li B, Qiao R, Wang Z, Zhou W, Li X, Xu W, Rao Z. Crystal structure of a tankyrase 1-telomere repeat factor 1 complex. Acta Crystallogr F Struct Biol Commun. 2016;72:320–7.
Stanley SE, Gable DL, Wagner CL, Carlile TM, Hanumanthu VS, Podlevsky JD, Khalil SE, DeZern AE, Rojas-Duran MF, Applegate CD, Alder JK, Parry EM, Gilbert WV, Armanios M. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis–emphysema. Sci Transl Med. 2016;8:351ra107.
Huber M, Treszl A, Wehland M, Winther I, Zergibel I, Reibis R, Bolbrinker J, Stoll M, Schonfelder G, Wegscheider K, Voller H, Kreutz R. Genetic variants implicated in telomere length associated with left ventricular function in patients with hypertension and cardiac organ damage. J Mol Med (Berl). 2012;90:1059–67.