Glucose-lowering agents and risk of ventricular arrhythmias and sudden cardiac death: A comprehensive review ranging from sulphonylureas to SGLT2 inhibitors
Scheen, André ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Language :
English
Title :
Glucose-lowering agents and risk of ventricular arrhythmias and sudden cardiac death: A comprehensive review ranging from sulphonylureas to SGLT2 inhibitors
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Gallego, M., Zayas-Arrabal, J., Alquiza, A., Apellaniz, B., Casis, O., Electrical features of the diabetic myocardium. Arrhythmic and cardiovascular safety considerations in diabetes. Front Pharmacol, 12, 2021, 687256.
Singh, K.B., Nnadozie, M.C., Abdal, M., Shrestha, N., Abe, R.A.M., Masroor, A., et al. Type 2 diabetes and causes of sudden cardiac death: a systematic review. Cureus, 13, 2021, e18145.
Vasiliadis, I., Kolovou, G., Mavrogeni, S., Nair, D.R., Mikhailidis, D.P., Sudden cardiac death and diabetes mellitus. J Diabetes Complications 28 (2014), 573–579.
Walker, A.M., Cubbon, R.M., Sudden cardiac death in patients with diabetes mellitus and chronic heart failure. Diab Vasc Dis Res 12 (2015), 228–233.
Aune, D., Schlesinger, S., Norat, T., Riboli, E., Diabetes mellitus and the risk of sudden cardiac death: A systematic review and meta-analysis of prospective studies. Nutr Metab Cardiovasc Dis 28 (2018), 543–556.
Schmitt, V.H., Hobohm, L., Munzel, T., Wenzel, P., Gori, T., Keller, K., Impact of diabetes mellitus on mortality rates and outcomes in myocardial infarction. Diabetes Metab, 47, 2021, 101211.
Weidner, K., Behnes, M., Schupp, T., Rusnak, J., Reiser, L., Bollow, A., et al. Type 2 diabetes is independently associated with all-cause mortality secondary to ventricular tachyarrhythmias. Cardiovasc Diabetol, 17, 2018, 125.
Scheen, A.J., Antidiabetic agents and risk of atrial fibrillation/flutter: a comparative critical analysis with a focus on the differences between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Metab, 2022 Sep 25, 101390, 10.1016/j.diabet.2022.101390.
Grisanti, L.A., Diabetes and arrhythmias: pathophysiology, mechanisms and therapeutic outcomes. Front Physiol, 9, 2018, 1669.
Myerburg, R.J., Junttila, M.J., Sudden cardiac death caused by coronary heart disease. Circulation 125 (2012), 1043–1052.
Saltzman, H.E., Arrhythmias and heart failure. Cardiol Clin 32 (2014), 125–133 ix.
Lip, G.Y., Heinzel, F.R., Gaita, F., Juanatey, J.R., Le Heuzey, J.Y., Potpara, T., et al. European Heart Rhythm Association/Heart Failure Association joint consensus document on arrhythmias in heart failure, endorsed by the Heart Rhythm Society and the Asia Pacific Heart Rhythm Society. Europace 18 (2016), 12–36.
Laczay, B., Faulx, M.D., Obstructive sleep apnea and cardiac arrhythmias: a contemporary review. J Clin Med, 10, 2021, 3785.
Scheen, A.J., Cardiovascular outcome studies in type 2 diabetes : comparison between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Res Clin Pract 143 (2018), 88–100.
Scheen, A.J., Counteracting heart failure with diabetes drugs: a review into the pharmacokinetic and pharmacodynamic properties. Expert Opin Drug Metab Toxicol 18 (2022), 381–393.
Delanaye, P., Scheen, A.J., The diuretic effects of SGLT2 inhibitors: A comprehensive review of their specificities and their role in renal protection. Diabetes Metab, 47, 2021, 101285.
Davis, T.M., Parsons, R.W., Broadhurst, R.J., Hobbs, M.S., Jamrozik, K., Arrhythmias and mortality after myocardial infarction in diabetic patients. Relationship to diabetes treatment. Diabetes Care 21 (1998), 637–640.
Savarese, G., Butler, J., Lund, L.H., Bhatt, D.L., Anker, S.D., Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms. Cardiovasc Res 118 (2022), 2231–2252.
Sapp, J.L., Krahn, A., Stevenson, W.G., Remme, C.A., Philippon, F., Nattel, S., Understanding, predicting, preventing, and treating ventricular arrhythmias: pushing sudden death into overtime. Can J Cardiol 38 (2022), 414–417.
Action to Control Cardiovascular Risk in Diabetes Study GGerstein, H.C., Miller, M.E., Byington, R.P., Goff, D.C. Jr., Bigger, J.T., et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358 (2008), 2545–2559.
Andersen, A., Jorgensen, P.G., Knop, F.K., Vilsboll, T., Hypoglycaemia and cardiac arrhythmias in diabetes. Ther Adv Endocrinol Metab, 11, 2020, 2042018820911803.
Reno, C.M., VanderWeele, J., Bayles, J., Litvin, M., Skinner, A., Jordan, A., et al. Severe hypoglycemia-induced fatal cardiac arrhythmias are augmented by diabetes and attenuated by recurrent hypoglycemia. Diabetes 66 (2017), 3091–3097.
Leak, D., Starr, P., The mechanism of arrhythmias during insulin-induced hypoglycemia. Am Heart J 63 (1962), 688–691.
Chow, E., Bernjak, A., Williams, S., Fawdry, R.A., Hibbert, S., Freeman, J., et al. Risk of cardiac arrhythmias during hypoglycemia in patients with type 2 diabetes and cardiovascular risk. Diabetes 63 (2014), 1738–1747.
Andersen, A., Bagger, J.I., Baldassarre, M.P.A., Christensen, M.B., Abelin, K.U., Faber, J., et al. Acute hypoglycemia and risk of cardiac arrhythmias in insulin-treated type 2 diabetes and controls. Eur J Endocrinol 185 (2021), 343–353.
Fitzpatrick, C., Chatterjee, S., Seidu, S., Bodicoat, D.H., Ng, G.A., Davies, M.J., et al. Association of hypoglycaemia and risk of cardiac arrhythmia in patients with diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes Metab 20 (2018), 2169–2178.
Stahn, A., Pistrosch, F., Ganz, X., Teige, M., Koehler, C., Bornstein, S., et al. Relationship between hypoglycemic episodes and ventricular arrhythmias in patients with type 2 diabetes and cardiovascular diseases: silent hypoglycemias and silent arrhythmias. Diabetes Care 37 (2014), 516–520.
Andersen, A., Bagger, J.I., Sorensen, S.K., Baldassarre, M.P.A., Pedersen-Bjergaard, U., Forman, J.L., et al. Associations of hypoglycemia, glycemic variability and risk of cardiac arrhythmias in insulin-treated patients with type 2 diabetes: a prospective, observational study. Cardiovasc Diabetol, 20, 2021, 241.
Lee, S., Jeevaratnam, K., Liu, T., Chang, D., Chang, C., Wong, W.T., et al. Risk stratification of cardiac arrhythmias and sudden cardiac death in type 2 diabetes mellitus patients receiving insulin therapy: A population-based cohort study. Clin Cardiol 44 (2021), 1602–1612.
International Hypoglycaemia Study G. Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol 7 (2019), 385–396.
Hanefeld, M., Ganz, X., Nolte, C., Hypoglycemia and cardiac arrhythmia in patients with diabetes mellitus type 2. Herz 39 (2014), 312–319.
Driver, C., Bamitale, K.D.S., Kazi, A., Olla, M., Nyane, A.N., Owira, P.M.O., Cardioprotective effects of metformin. J Cardiovasc Pharmacol 72 (2018), 121–127.
Nantsupawat, T., Wongcharoen, W., Chattipakorn, S.C., Chattipakorn, N., Effects of metformin on atrial and ventricular arrhythmias: evidence from cell to patient. Cardiovasc Diabetol, 19, 2020, 198.
Schernthaner, G., Brand, K., Bailey, C.J., Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism, 130, 2022, 155160.
Najeed, S.A., Khan, I.A., Molnar, J., Somberg, J.C., Differential effect of glyburide (glibenclamide) and metformin on QT dispersion: a potential adenosine triphosphate sensitive K+ channel effect. Am J Cardiol 90 (2002), 1103–1106.
Cacciapuoti, F., Spiezia, R., Bianchi, U., Lama, D., D'Avino, M., Varricchio, M, Effectiveness of glibenclamide on myocardial ischemic ventricular arrhythmias in non-insulin-dependent diabetes mellitus. Am J Cardiol 67 (1991), 843–847.
Lee, K.T., Yeh, Y.H., Chang, S.H., See, L.C., Lee, C.H., Wu, L.S., et al. Metformin is associated with fewer major adverse cardiac events among patients with a new diagnosis of type 2 diabetes mellitus: A propensity score-matched nationwide study. Medicine (Baltimore), 96, 2017, e7507.
Ostropolets, A., Elias, P.A., Reyes, M.V., Wan, E.Y., Pajvani, U.B., Hripcsak, G., et al. Metformin is associated with a lower risk of atrial fibrillation and ventricular arrhythmias compared with Sulfonylureas: an observational study. Circ Arrhythm Electrophysiol, 14, 2021, e009115.
Johnson, J.A., Majumdar, S.R., Simpson, S.H., Toth, E.L., Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 25 (2002), 2244–2248.
Roussel, R., Travert, F., Pasquet, B., Wilson, P.W., Smith, S.C. Jr., Goto, S., et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med 170 (2010), 1892–1899.
American Diabetes Association Professional Practice CommitteeDraznin, B., Aroda, V.R., Bakris, G., Benson, G., et al. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care 45 (2022), S125–SS43.
Scheen, A.J., Challenging 2019 ESC guidelines for the management of type 2 diabetes. Diabetes Metab 46 (2020), 181–185.
Scheen, A.J., Could metformin modulate cardiovascular outcomes differently with DPP-4 inhibitors compared with SGLT2 inhibitors?. Diabetes Metab, 47, 2021, 101209.
Leonard, C.E., Hennessy, S., Han, X., Siscovick, D.S., Flory, J.H., Deo, R., Pro- and antiarrhythmic actions of sulfonylureas: mechanistic and clinical evidence. Trends Endocrinol Metab 28 (2017), 561–586.
Simpson, S.H., Lee, J., Choi, S., Vandermeer, B., Abdelmoneim, A.S., Featherstone, T.R., Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol 3 (2015), 43–51.
Aronson, D., Mittleman, M.A., Burger, A.J., Effects of sulfonylurea hypoglycemic agents and adenosine triphosphate dependent potassium channel antagonists on ventricular arrhythmias in patients with decompensated heart failure. Pacing Clin Electrophysiol 26 (2003), 1254–1261.
Eroglu, T.E., Jia, L., Blom, M.T., Verkerk, A.O., Devalla, H.D., Boink, G.J.J., et al. Sulfonylurea antidiabetics are associated with lower risk of out-of-hospital cardiac arrest: Real-world data from a population-based study. Br J Clin Pharmacol 87 (2021), 3588–3598.
Schramm, T.K., Gislason, G.H., Vaag, A., Rasmussen, J.N., Folke, F., Hansen, M.L., et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32 (2011), 1900–1908.
Lee, T.T.L., Hui, J.M.H., Lee, Y.H.A., Satti, D.I., Shum, Y.K.L., Kiu, P.T.H., et al. Sulfonylurea is associated with higher risks of ventricular arrhythmia or sudden cardiac death compared to metformin: a population-based cohort study. J Am Heart Assoc, 11, 2022, e026289.
Islam, N., Ayele, H.T., Yu, O.H.Y., Douros, A., Filion, K.B., Sulfonylureas and the risk of ventricular arrhythmias among people with type 2 diabetes: a systematic review of observational studies. Clin Pharmacol Ther 111 (2022), 1248–1257.
Azoulay, L., Suissa, S., Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies. Diabetes Care 40 (2017), 706–714.
Leonard, C.E., Brensinger, C.M., Aquilante, C.L., Bilker, W.B., Boudreau, D.M., Deo, R., et al. Comparative safety of sulfonylureas and the risk of sudden cardiac arrest and ventricular arrhythmia. Diabetes Care 41 (2018), 713–722.
Dhopeshwarkar, N., Brensinger, C.M., Bilker, W.B., Soprano, S.E., Flory, J.H., Dawwas, G.K., et al. Risk of sudden cardiac arrest and ventricular arrhythmia with sulfonylureas: An experience with conceptual replication in two independent populations. Sci Rep, 10, 2020, 10070.
Raveendran, A.V., Fernandez, C.J., Jacob, K., Efficacy and cardiovascular safety of thiazolidinediones. Curr Drug Saf 16 (2021), 233–249.
Zhang, Z., Zhang, X., Korantzopoulos, P., Letsas, K.P., Tse, G., Gong, M., et al. Thiazolidinedione use and atrial fibrillation in diabetic patients: a meta-analysis. BMC Cardiovasc Disord, 17, 2017, 96.
Nesti, L., Trico, D., Mengozzi, A., Natali, A., Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol, 20, 2021, 109.
Leonard, C.E., Brensinger, C.M., Dawwas, G.K., Deo, R., Bilker, W.B., Soprano, S.E., et al. The risk of sudden cardiac arrest and ventricular arrhythmia with rosiglitazone versus pioglitazone: real-world evidence on thiazolidinedione safety. Cardiovasc Diabetol, 19, 2020, 25.
Vaccaro, O., Masulli, M., Nicolucci, A., Bonora, E., Del Prato, S., Maggioni, A.P., et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol 5 (2017), 887–897.
Ussher, J.R., Drucker, D.J., Cardiovascular actions of incretin-based therapies. Circ Res 114 (2014), 1788–1803.
Chattipakorn, N., Apaijai, N., Chattipakorn, S.C., Dipeptidyl peptidase-4 inhibitors and the ischemic heart: Additional benefits beyond glycemic control. Int J Cardiol 202 (2016), 415–416.
Scheen, A.J., GLP-1 receptor agonists and cardiovascular protection. Class effect or not ?. Diabetes Metab 44 (2018), 193–196.
Scheen, A.J., Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors. Circ Res 122 (2018), 1439–1459.
Scheen, A.J., Cardiovascular safety of DPP-4 inhibitors compared with sulphonylureas: Results of randomized controlled trials and observational studies. Diabetes Metab 44 (2018), 386–392.
Wang, J., Wu, H.Y., Chien, K.L., Cardioprotective effects of dipeptidyl peptidase-4 inhibitors versus sulfonylureas in addition to metformin: A nationwide cohort study of patients with type 2 diabetes. Diabetes Metab, 48, 2022, 101299.
Wang, T., Wang, F., Zhou, J., Tang, H., Giovenale, S., Adverse effects of incretin-based therapies on major cardiovascular and arrhythmia events: meta-analysis of randomized trials. Diabetes Metab Res Rev 32 (2016), 843–857.
Nauck, M.A., McGuire, D.K., Pieper, K.S., Lokhnygina, Y., Strandberg, T.E., Riefflin, A., et al. Sitagliptin does not reduce the risk of cardiovascular death or hospitalization for heart failure following myocardial infarction in patients with diabetes: observations from TECOS. Cardiovasc Diabetol, 18, 2019, 116.
Cavallari, I., Bhatt, D.L., Steg, P.G., Leiter, L.A., McGuire, D.K., Mosenzon, O., et al. Causes and risk factors for death in diabetes: a competing-risk analysis from the SAVOR-TIMI 53 trial. J Am Coll Cardiol 77 (2021), 1837–1840.
Gamble, J.M., Thomas, J.M., Twells, L.K., Midodzi, W.K., Majumdar, S.R., Comparative effectiveness of incretin-based therapies and the risk of death and cardiovascular events in 38,233 metformin monotherapy users. Medicine (Baltimore), 95, 2016, e3995.
Lee, S., Zhou, J., Leung, K.S.K., Wai, A.K.C., Jeevaratnam, K., King, E., et al. Comparison of sodium-glucose cotransporter-2 inhibitor and dipeptidyl peptidase-4 inhibitor on the risks of new-onset atrial fibrillation, stroke and mortality in diabetic patients: a propensity score-matched study in Hong Kong. Cardiovasc Drugs Ther, 2022, 10.1007/s10557-022-07319-x Feb 10.
Dawwas, G.K., Hennessy, S., Brensinger, C.M., Deo, R., Bilker, W.B., Soprano, S.E., et al. Comparative safety of dipeptidyl peptidase-4 inhibitors and sudden cardiac arrest and ventricular arrhythmia: population-based cohort studies. Clin Pharmacol Ther 111 (2022), 227–242.
Scheen, A.J., Efficacy /safety balance of DPP-4 inhibitors versus SGLT2 inhibitors in elderly patients with type 2 diabetes. Diabetes Metab, 47, 2021, 101275.
Ma, X., Liu, Z., Ilyas, I., Little, P.J., Kamato, D., Sahebka, A., et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci 17 (2021), 2050–2068.
Helmstadter, J., Keppeler, K., Kuster, L., Munzel, T., Daiber, A., Steven, S., Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits-The role of the GLP-1 receptor. Br J Pharmacol 179 (2022), 659–676.
Ang, R., Mastitskaya, S., Hosford, P.S., Basalay, M., Specterman, M., Aziz, Q., et al. Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circ Arrhythm Electrophysiol, 11, 2018, e006740.
Demmel, V., Sandberg-Schaal, A., Jacobsen, J.B., Golor, G., Pettersson, J., Flint, A., No QTc prolongation with semaglutide: a thorough QT study in healthy subjects. Diabetes Ther 9 (2018), 1441–1456.
Boulmpou, A., Patoulias, D., Papadopoulos, C.E., Teperikidis, E., Doumas, M., Vassilikos, V., Meta-analysis of cardiovascular outcome trials assessing the impact of glucagon-like peptide-1 receptor agonists on major cardiac arrhythmias. Acta Cardiol 14 (2022), 1–6, 10.1080/00015385.2022.2087839 Jun.
Scheen, A.J., GLP-1 receptor agonists and heart failure in diabetes. Diabetes Metab 43:Suppl 1 (2017), 2S13–22S9.
Li, X., Song, Y., Guo, T., Xiao, G., Li, Q., Effect of glucagon- like peptide 1 receptor agonists on the renal protection in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab, 48, 2022, 101366.
Scheen, A.J., Sodium-glucose co-transporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nature Rev Endocrinol 16 (2020), 556–577.
Kolesnik, E., Scherr, D., Rohrer, U., Benedikt, M., Manninger, M., Sourij, H., et al. SGLT2 inhibitors and their antiarrhythmic properties. Int J Mol Sci, 23, 2022, 1678.
Hu, Z., Ju, F., Du, L., Abbott, G.W., Empagliflozin protects the heart against ischemia/reperfusion-induced sudden cardiac death. Cardiovasc Diabetol, 20, 2021, 199.
Azam, M.A., Chakraborty, P., Si, D., Du, B., Masse, S., Lai, P.F.H., et al. Anti-arrhythmic and inotropic effects of empagliflozin following myocardial ischemia. Life Sci, 276, 2021, 119440.
Attachaipanich, T., Chattipakorn, S.C., Chattipakorn, N., Potential roles of sodium-glucose co-transporter 2 inhibitors in attenuating cardiac arrhythmias in diabetes and heart failure. J Cell Physiol 237 (2022), 2404–2419.
Scheen, A.J., Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr Cardiol Rep, 21, 2019, 70.
Spallone, V., Valensi, P., SGLT2 inhibitors and the autonomic nervous system in diabetes: A promising challenge to better understand multiple target improvement. Diabetes Metab, 47, 2021, 101224.
Sardu, C., Massimo Massetti, M., Rambaldi, P., Gatta, G., Cappabianca, S., Sasso, F.C., et al. SGLT2-inhibitors reduce the cardiac autonomic neuropathy dysfunction and vaso-vagal syncope recurrence in patients with type 2 diabetes mellitus: the SCAN study. Metabolism, 2022, 155243.
Shimizu, W., Kubota, Y., Hoshika, Y., Mozawa, K., Tara, S., Tokita, Y., et al. Effects of empagliflozin versus placebo on cardiac sympathetic activity in acute myocardial infarction patients with type 2 diabetes mellitus: the EMBODY trial. Cardiovasc Diabetol, 19, 2020, 148.
Lim, V.G., He, H., Lachlan, T., Ng, G.A., Kyrou, I., Randeva, H.S., et al. Impact of sodium-glucose co-transporter inhibitors on cardiac autonomic function and mortality: no time to die. Europace 24 (2022), 1052–1057.
Koufakis, T., Giannakoulas, G., Zebekakis, P., Kotsa, K., The effect of dapagliflozin on ventricular arrhythmias, cardiac arrest, or sudden death in people with heart failure: a tick in another box for sodium-glucose cotransporter 2 inhibitors. Expert Opin Pharmacother 23 (2022), 321–325.
Light, P.E., Decoding the effects of SGLT2 inhibitors on cardiac arrhythmias in heart failure. Eur Heart J 42 (2021), 3739–3740.
Li, H.L., Lip, G.Y.H., Feng, Q., Fei, Y., Tse, Y.K., Wu, M.Z., et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol, 20, 2021, 100.
Fernandes, G.C., Fernandes, A., Cardoso, R., Penalver, J., Knijnik, L., Mitrani, R.D., et al. Association of SGLT2 inhibitors with arrhythmias and sudden cardiac death in patients with type 2 diabetes or heart failure: A meta-analysis of 34 randomized controlled trials. Heart Rhythm 18 (2021), 1098–1105.
Sfairopoulos, D., Zhang, N., Wang, Y., Chen, Z., Letsas, K.P., Tse, G., et al. Association between sodium-glucose cotransporter-2 inhibitors and risk of sudden cardiac death or ventricular arrhythmias: a meta-analysis of randomized controlled trials. Europace 24 (2022), 20–30.
Yin, Z., Zheng, H., Guo, Z., Effect of sodium-glucose co-transporter protein 2 inhibitors on arrhythmia in heart failure patients with or without type 2 diabetes: a meta-analysis of randomized controlled trials. Front Cardiovasc Med, 9, 2022, 902923.
Terpening, C.M., A call for more complete reporting of cardiovascular death. Circulation 140 (2019), 887–888.
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373 (2015), 2117–2128.
Fitchett, D., Inzucchi, S.E., Lachin, J.M., Wanner, C., van de Borne, P., Mattheus, M., et al. Cardiovascular mortality reduction with empagliflozin in patients with type 2 diabetes and cardiovascular disease. J Am Coll Cardiol 71 (2018), 364–367.
Curtain, J.P., Docherty, K.F., Jhund, P.S., Petrie, M.C., Inzucchi, S.E., Kober, L., et al. Effect of dapagliflozin on ventricular arrhythmias, resuscitated cardiac arrest, or sudden death in DAPA-HF. Eur Heart J 42 (2021), 3727–3738.
Heerspink, H.J.L., Sjostrom, C.D., Jongs, N., Chertow, G.M., Kosiborod, M., Hou, F.F., et al. Effects of dapagliflozin on mortality in patients with chronic kidney disease: a pre-specified analysis from the DAPA-CKD randomized controlled trial. Eur Heart J 42 (2021), 1216–1227.
Ilyas, F., Jones, L., Tee, S.L., Horsfall, M., Swan, A., Wollaston, F., et al. Acute pleiotropic effects of dapagliflozin in type 2 diabetic patients with heart failure with reduced ejection fraction: a crossover trial. ESC Heart Fail 8 (2021), 4346–4352.
Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383 (2020), 1413–1424.
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Bohm, M., et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385 (2021), 1451–1461.
Jhuo, S.J., Lin, T.H., Lin, Y.H., Tsai, W.C., Liu, I.H., Wu, B.N., et al. Clinical observation of SGLT2 inhibitor therapy for cardiac arrhythmia and related cardiovascular disease in diabetic patients with controlled hypertension. J Pers Med, 12, 2022, 271.
Wu, V.C., Chiu, K.P., Wang, C.L., Hsu, C.Y., Tu, H.T., Huang, Y.T., et al. Electrocardiographic changes associated with SGLT2 inhibitors and non-SGLT2 inhibitors: A multi-center retrospective study. Front Cardiovasc Med, 9, 2022, 934193.
Fawzy, A.M., Rivera-Caravaca, J.M., Underhill, P., Fauchier, L., Lip, G.Y.H., Incident heart failure, arrhythmias and cardiovascular outcomes with sodium glucose co-transporter 2 (SGLT2) inhibitor use in diabetic patients: Insights from a global federated electronic medical record database. Diabetes Obes Metab, 2022 Aug 31, 10.1111/dom.14854.
Scheen, A.J., Glucose-lowering agents and risk of cardiac arrhythmias. Acta Cardiologica, 2022, 1–2, 10.1080/00015385.2022.2101875 Aug 25.
Lopaschuk, G.D., Verma, S., Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: a state-of-the-art review. JACC Basic Transl Sci 5 (2020), 632–644.
Fujiki, S., Iijima, K., Okabe, M., Niwano, S., Tsujita, K., Naito, S., et al. Placebo-controlled, double-blind study of empagliflozin (EMPA) and implantable cardioverter-defibrillator (EMPA-ICD) in patients with type 2 diabetes (T2DM): rationale and design. Diabetes Ther 11 (2020), 2739–2755.
von Lewinski, D., Tripolt, N.J., Sourij, H., Pferschy, P.N., Oulhaj, A., Alber, H., et al. Ertugliflozin to reduce arrhythmic burden in ICD/CRT patients (ERASe-trial) - A phase III study. Am Heart J 246 (2022), 152–160.
Remme, C.A., Sudden cardiac death in diabetes and obesity: mechanisms and therapeutic strategies. Can J Cardiol 38 (2022), 418–426.
Dyck, J.R.B., Sossalla, S., Hamdani, N., Coronel, R., Weber, N.C., Light, P.E., et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol 167 (2022), 17–31.
Jing, Y., Yang, R., Chen, W., Ye, Q., Anti-arrhythmic effects of sodium-glucose co-transporter 2 inhibitors. Front Pharmacol, 13, 2022, 898718.
Bonnet, F., Scheen, A.J., Effects of SGLT2 inhibitors on systemic and tissue low-grade inflammation: potential contribution for diabetic complications and cardiovascular disease. Diabetes Metab 44 (2018), 457–464.
Andelova, K., Bacova, B.S., Sykora, M., Hlivak, P., Barancik, M., Tribulova, N., Mechanisms underlying antiarrhythmic properties of cardioprotective agents impacting inflammation and oxidative stress. Int J Mol Sci, 23, 2022, 1416.
Seferovic, P.M., Fragasso, G., Petrie, M., Mullens, W., Ferrari, R., Thum, T., et al. Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 22 (2020), 1495–1503.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.