Scheen, André ; Centre Hospitalier Universitaire de Liège - CHU > > Service de diabétologie, nutrition, maladies métaboliques
Fève, B.; Faculté de médecine Pierre-et-Marie-Curie, Assistance publique–Hôpitaux de Paris (AP–HP), hôpital Saint-Antoine, département d'endocrinologie, CRMR PRISIS, Paris, France, Université de la Sorbonne, Inserm, Centre de Recherche Saint-Antoine UMR S_938, Paris, France, Institut Hospitalo-Universitaire de Cardiométabolisme et Nutrition (ICAN), Paris, France
Language :
English
Title :
Diabètes pharmaco-induits : quatre classes médicamenteuses au cœur de notre pratique clinique
Alternative titles :
[en] Drug-induced diabetes: Four pharmacological classes at the heart of our clinical practice
Fathallah, N., Slim, R., Larif, S., et al. Drug-induced hyperglycaemia and diabetes. Drug Saf 38 (2015), 1153–1168.
Liu, M.Z., He, H.Y., Luo, J.Q., et al. Drug-induced hyperglycaemia and diabetes: pharmacogenomics perspectives. Arch Pharm Res 41 (2018), 725–736.
Fève, B., Scheen, A.J., When therapeutic drugs lead to diabetes. Diabetologia 65 (2022), 751–762.
Guber, K., Pemmasani, G., Malik, A., et al. Statins and higher diabetes mellitus risk: incidence, proposed mechanisms, and clinical implications. Cardiol Rev 29 (2021), 314–322.
Suh, S., Park, M.K., Glucocorticoid-induced diabetes mellitus: an important but overlooked problem. Endocrinol Metab (Seoul) 32 (2017), 180–189.
Reynolds, R.M., Labad, J., Sears, A.V., et al. Edinburgh Type 2 Diabetes study investigators. Glucocorticoid treatment and impaired mood, memory and metabolism in people with diabetes: the Edinburgh Type 2 Diabetes study. Eur J Endocrinol 166 (2012), 861–868.
Burt, M.G., Willenberg, V.M., Petersons, C.J., et al. Screening for diabetes in patients with inflammatory rheumatological disease administered long-term prednisolone: a cross-sectional study. Rheumatology (Oxford) 51 (2012), 1112–1119.
Fardet, L., Fève, B., Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs 74 (2014), 1731–1745.
Burt, M.G., Roberts, G.W., Aguilar-Loza, N.R., et al. Continuous monitoring of circadian glycemic patterns in patients receiving prednisolone for COPD. J Clin Endocrinol Metab 96 (2011), 1789–1796.
Radhakutty, A., Burt, M.G., Management of endocrine disease: critical review of the evidence underlying management of glucocorticoid-induced hyperglycemia. Eur J Endocrinol 179 (2018), R207–R218.
Gurwitz, J.H., Bohn, R.L., Glynn, R.J., et al. Glucocorticoids and the risk for initiation of hypoglycemic therapy. Arch Intern Med 154 (1994), 97–101.
Stout, A., Friedly, J., Standaert, C.J., Systemic absorption and side effects of locally injected glucocorticoids. PMR 11 (2019), 409–419.
Hansen, K.B., Vilsbøll, T., Bagger, J.I., et al. Reduced glucose tolerance and insulin resistance induced by steroid treatment, relative physical inactivity, and high-calorie diet impairs the incretin effect in healthy subjects. J Clin Endocrinol Metab 95 (2010), 3309–3317.
Dirlewanger, M., Schneiter, P.H., Paquot, N., et al. Effects of glucocorticoids on hepatic sensitivity to insulin and glucagon in man. Clin Nutr 19 (2000), 29–34.
Saad, M.J., Folli, F., Kahn, J.A., Kahn, C.R., Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats. J Clin Invest 92 (1993), 2065–2072.
Lindroos, J., Husa, J., Mitterer, G., et al. Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab 18 (2013), 62–74.
Fardet, L., Antuna-Puente, B., Vatier, C., et al. Adipokine profile in glucocorticoid-treated patients: baseline plasma leptin level predicts occurrence of lipodystrophy. Clin Endocrinol (Oxf) 78 (2013), 43–51.
Dalle, H., Garcia, M., Antoine, B., et al. Adipocyte glucocorticoid receptor deficiency promotes adipose tissue expandability and improves the metabolic profile under corticosterone exposure. Diabetes 68 (2019), 305–317.
Delaunay, F., Khan, A., Cintra, A., et al. Pancreatic beta cells are important targets for the diabetogenic effects of glucocorticoids. J Clin Invest 100 (1997), 2094–2098.
Courty, E., Besseiche, A., Do, T.T., et al. Adaptive β-cell neogenesis in the adult mouse in response to glucocorticoid-induced insulin resistance. Diabetes 68 (2019), 95–108.
Kasayama, S., Tanaka, T., Hashimoto, K., et al. Efficacy of glimepiride for the treatment of diabetes occurring during glucocorticoid therapy. Diabetes Care 25 (2002), 2359–2360.
van Genugten, R.E., van Raalte, D.H., Muskiet, M.H., et al. Does dipeptidyl peptidase-4 inhibition prevent the diabetogenic effects of glucocorticoids in men with the metabolic syndrome? A randomized controlled trial. Eur J Endocrinol 170 (2014), 429–439.
van Raalte, D.H., van Genugten, R.E., Linssen, M.M., et al. Glucagon-like peptide-1 receptor agonist treatment prevents glucocorticoid-induced glucose intolerance and islet-cell dysfunction in humans. Diabetes Care 34 (2011), 412–417.
Holt, R.I., Association between antipsychotic medication use and diabetes. Curr Diab Rep, 19, 2019, 96.
Scheen, A.J., De Hert, M.A., Abnormal glucose metabolism in patients treated with antipsychotics. Diabetes Metab 33 (2007), 169–175.
Barton, B.B., Segger, F., Fischer, K., et al. Update on weight-gain caused by antipsychotics: a systematic review and meta-analysis. Expert Opin Drug Saf 19 (2020), 295–314.
Vancampfort, D., Correll, C.U., Galling, B., et al. Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: a systematic review and large scale meta-analysis. World Psychiatry 15 (2016), 166–174.
Hirsch, L., Yang, J., Bresee, L., et al. Second-generation antipsychotics and metabolic side effects: a systematic review of population-based studies. Drug Saf 40 (2017), 771–781.
Grajales, D., Ferreira, V., Valverde, Á.M., Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain. Cells, 8, 2019, 1336.
Polcwiartek, C., Vang, T., Bruhn, C.H., et al. Diabetic ketoacidosis in patients exposed to antipsychotics: a systematic literature review and analysis of Danish adverse drug event reports. Psychopharmacology (Berl) 233 (2016), 3663–3672.
Singh, R., Bansal, Y., Medhi, B., Kuhad, A., Antipsychotics-induced metabolic alterations: recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol 844 (2019), 231–240.
American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists, North American Association for the Study of Obesity, Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 27 (2004), 596–601.
Chen, J., Huang, X.F., Shao, R., et al. Molecular mechanisms of antipsychotic drug-induced diabetes. Front Neurosci, 11, 2017, 643.
Weston-Green, K., Huang, X.F., Deng, C., Second generation antipsychotic-induced type 2 diabetes: a role for the muscarinic M3 receptor. CNS Drugs 27 (2013), 1069–1080.
Cernea, S., Dima, L., Correll, C.U., Manu, P., Pharmacological management of glucose dysregulation in patients treated with second-generation antipsychotics. Drugs 80 (2020), 1763–1781.
Siskind, D., Hahn, M., Correll, C.U., et al. Glucagon-like peptide-1 receptor agonists for antipsychotic-associated cardio-metabolic risk factors: A systematic review and individual participant data meta-analysis. Diabetes Obes Metab 21 (2019), 293–302.
Lagathu, C., Béréziat, V., Gorwood, J., et al. Metabolic complications affecting adipose tissue, lipid and glucose metabolism associated with HIV antiretroviral treatment. Expert Opin Drug Saf 18 (2019), 829–840.
Koethe, J.R., Lagathu, C., Lake, J.E., et al. HIV and antiretroviral therapy-related fat alterations. Nat Rev Dis Primers, 6, 2020, 48 [Erratum in: Nat Rev Dis Primers 2020; 6:54].
Capeau, J., Bouteloup, V., Katlama, C., et al. ANRS CO8 APROCO-COPILOTE Cohort Study Grup. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS 26 (2012), 303–314.
Rasmussen, L.D., Mathiesen, E.R., Kronborg, G., et al. Risk of diabetes mellitus in persons with and without HIV: a Danish nationwide population-based cohort study. PLoS One, 7, 2012, e44575.
Nansseu, J.R., Bigna, J.J., Kaze, A.D., Noubiap, J.J., Incidence and risk factors for diabetes and diabetes mellitus among HIV-infected adults on antiretroviral therapy: a systematic review and meta-analysis. Epidemiology 29 (2018), 431–441.
Karamchand, S., Leisegang, R., Schomaker, M., et al. Risk factors for incident diabetes in a cohort taking first-line nonnucleoside reverse transcriptase inhibitor-based antiretroviral therapy. Medicine (Baltimore), 95, 2016, e2844.
Caron-Debarle, M., Lagathu, C., Boccara, F., et al. HIV-associated lipodystrophy: from fat injury to premature aging. Trends Mol Med 16 (2010), 218–229.
Lagathu, C., Cossarizza, A., Béréziat, V., et al. Basic science and pathogenesis of ageing with HIV: potential mechanisms and biomarkers. AIDS 31:Suppl.2 (2017), S105–S119.
Payne, B.A., Gardner, K., Chinnery, P.F., Mitochondrial DNA mutations in ageing and disease: implications for HIV?. Antivir Ther 20 (2015), 109–120.
Lake, J.E., Stanley, T.L., Apovian, C.M., et al. Practical review of recognition and management of obesity and lipohypertrophy in human immunodeficiency virus infection. Clin Infect Dis 64 (2017), 1422–1429 [Erratum in: Clin Infect Dis 2017; 65:1431-3].
Torriani, M., Srinivasa, S., Fitch, K.V., et al. Dysfunctional subcutaneous fat with reduced Dicer and brown adipose tissue gene expression in HIV-infected patients. J Clin Endocrinol Metab 101 (2016), 1225–1234.
Vigouroux, C., Guénantin, A.C., Vatier, C., et al. Lipodystrophic syndromes due to LMNA mutations: recent developments on molecular aspects, pathophysiological hypotheses and therapeutic perspectives. Nucleus 9 (2018), 235–248.
Díaz-Delfín, J., del Mar Gutiérrez, M., Gallego-Escuredo, J.M., et al. Effects of nevirapine and efavirenz on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. Antiviral Res 91 (2011), 112–119.
Gorwood, J., Bourgeois, C., Pourcher, V., et al. The integrase inhibitors dolutegravir and raltegravir exert proadipogenic and profibrotic effects and induce insulin resistance in human/simian adipose tissue and human adipocytes. Clin Infect Dis 71 (2020), e549–e560.
Zhang, S., Carper, M.J., Lei, X., et al. Protease inhibitors used in the treatment of HIV+ induce β-cell apoptosis via the mitochondrial pathway and compromise insulin secretion. Am J Physiol Endocrinol Metab 296 (2009), E925–E935.
Willig, A.L., Overton, E.T., Metabolic complications and glucose metabolism in HIV infection: a review of the evidence. Curr HIV/AIDS Rep 13 (2016), 289–296.
Monroe, A.K., Glesby, M.J., Brown, T.T., Diagnosing and managing diabetes in HIV-infected patients: current concepts. Clin Infect Dis 60 (2015), 453–462.
Fitch, K., Abbara, S., Lee, H., et al. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS 26 (2012), 587–597.
Davies, M.J., D'Alessio, D.A., Fradkin, J., et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Diabetes Association for the Study of Diabetes (EASD). Diabetologia 61 (2018), 2461–2498 [Erratum in: Diabetologia 2019; 62:873].
de Filette, J., Andreescu, C.E., Cools, F., et al. A systematic review and meta-analysis of endocrine-related adverse events associated with immune checkpoint inhibitors. Horm Metab Res 51 (2019), 145–156.
de Filette, J.M., Pen, J.J., Decoster, L., et al. Immune checkpoint inhibitors and type 1 diabetes mellitus: a case report and systematic review. Eur J Endocrinol 181 (2019), 363–374.
Lu, J., Yang, J., Liang, Y., et al. Incidence of immune checkpoint inhibitor-associated diabetes: a meta-analysis of randomized controlled studies. Front Pharmacol, 10, 2019, 1453.
Liu, J., Zhou, H., Zhang, Y., et al. Reporting of immune checkpoint inhibitor therapy-associated diabetes, 2015–2019. Diabetes Care 43 (2020), e79–e80.
Zheng, Z., Liu, Y., Yang, J., et al. Diabetes mellitus induced by immune checkpoint inhibitors. Diabetes Metab Res Rev, 37, 2021, e3366.
Wright, J.J., Salem, J.E., Johnson, D.B., et al. Increased reporting of immune checkpoint inhibitor-associated diabetes. Diabetes Care 41 (2018), e150–e151.
Zagouras, A., Patil, P.D., Yogi-Morren, D., Pennell, N.A., Cases from the immune-related adverse event tumor board: diagnosis and management of the immune checkpoint blockade-induced diabetes. Oncologist 25 (2020), 921–924.
Youssef, N., Noureldein, M., Daoud, G., Eid, A.A., Immune checkpoint inhibitors and diabetes: Mechanisms and predictors. Diabetes Metab, 47, 2021, 101193.
George, J., Bajaj, D., Sankaramangalam, K., et al. Incidence of pancreatitis with the use of immune checkpoint inhibitors (ICI) in advanced cancers: A systematic review and meta-analysis. Pancreatology 19 (2019), 587–594.
Quandt, Z., Young, A., Anderson, M., Immune checkpoint inhibitor diabetes mellitus: a novel form of autoimmune diabetes. Clin Exp Immunol 200 (2020), 131–140.
Yoneda, S., Imagawa, A., Hosokawa, Y., et al. T-lymphocyte infiltration to islets in the pancreas of a patient who developed type 1 diabetes after administration of immune checkpoint inhibitors. Diabetes Care 42 (2019), e116–e118.