Article (Scientific journals)
A new approach to assessing calcium status via a machine learning algorithm.
Bancal, Candice; Salipante, Florian; Hannas, Nassim et al.
2022In Clinica Chimica Acta, 539, p. 198 - 205
Peer Reviewed verified by ORBi
 

Files


Full Text
1-s2.0-S0009898122014206-main.pdf
Author postprint (1.82 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Algorithm; Artificial intelligence; Calcium; Corrected calcium; Ionized calcium; Biochemistry; Clinical Biochemistry; Biochemistry (medical); General Medicine
Abstract :
[en] ("[en] BACKGROUND AND AIMS: Calcium plays a fundamental role in biological processes. Ionized calcium (Ca2+), is the biologically active fraction, but in practice total or corrected calcium assays are routinely used to determine calcium status. MATERIALS AND METHODS: We retrospectively compared total and corrected calcium to assess the calcium status, with ionized calcium which is considered for now like the best indicator. To compensate for their lack of performance we created a machine learning algorithm to predict calcium status. RESULTS: Corrected calcium performed less well than total calcium with 58% and 74% agreement, respectively, in our population. Total calcium was especially good for hypocalcemic samples: 93% agreement versus 45% for normocalcemic and 54% for hypercalcemic samples. Corrected calcium was especially good for hypercalcemic and normocalcemic samples: 90% and 84% agreement respectively versus 40% for hypocalcemic samples. Corrected calcium is mainly faulty in hypoalbuminemia, acid-base disorders, renal insufficiency, hyperphosphatemia, or inflammatory syndrome. With our ML algorithm, we obtained 81% correct classifications. Its main advantage is that its performance are not influenced by the variables studied or the calcium status. CONCLUSION: In many situations, corrected calcium should not be used. Our ML algorithm may make a better assessment of calcium status than total calcium. Finally, if doubt, an ionized calcium assay should be performed.","[en] ","")
Disciplines :
Laboratory medicine & medical technology
Author, co-author :
Bancal, Candice;  Laboratoire de biochimie et biologie moléculaire, CHU Nîmes, France. Electronic address: candice.bancal@chu-nimes.fr
Salipante, Florian;  Laboratoire de biostatistique, épidémiologie clinique, santé publique, innovation et méthodologie, CHU de Nîmes, Université de Montpellier, Nîmes, France
Hannas, Nassim;  Laboratoire Labosud, groupe Inovie, Montpellier, France
Lumbroso, Serge;  Laboratoire de biochimie et biologie moléculaire, CHU Nîmes, France
Cavalier, Etienne  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
De Brauwere, David-Paul;  Service de biochimie et biologie moléculaire, UM Pathologies Héréditaires du Métabolisme et Du Globule Rouge, Hospices civils de Lyon, France
Language :
English
Title :
A new approach to assessing calcium status via a machine learning algorithm.
Publication date :
20 December 2022
Journal title :
Clinica Chimica Acta
ISSN :
0009-8981
eISSN :
1873-3492
Publisher :
Elsevier B.V., Netherlands
Volume :
539
Pages :
198 - 205
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
We wish to thank Teresa Sawyers, British Medical Writer at the BESPIM, Nîmes University Hospital, France, for translating this article.
Available on ORBi :
since 16 February 2023

Statistics


Number of views
46 (1 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
0
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi