CuFeO2; Delafossite; Magnetic susceptibility; Mössbauer spectroscopy
Abstract :
[en] The magnetic susceptibility of and hyperfine interactions in the hexagonal 2H polymorph of delafossite CuFeO2 were investigated by SQUID magnetometry and Mössbauer spectroscopy, respectively, at low temperatures. The hydrothermally synthesized 2H-CuFeO2 sample contained a 10 vol-% α-Fe2O3 impurity detected by X-ray diffraction, whose contribution to the susceptibility and hyperfine interactions were easily distinguishable from the major 2H-CuFeO2 one. Morphology and indirect optical band gap investigated by scanning electron microscopy and diffuse reflectance measurements showed well expected results for a hydrothermally synthesized delafossite sample. The magnetic susceptibility of 2H-CuFeO2 revealed a first antiferromagnetic like transitions at 16 K and a second transition at 13.5 K or 10 K depending on measurement protocol, which points towards modified exchange interactions as compared to the 3R polymorph. Complementary Mössbauer measurements revealed complicated spectral shapes at low temperatures indicating rather complex magnetic structures and magnetic relaxations above 20 K.
Disciplines :
Physics
Author, co-author :
Klobes, Benedikt ; Bremerhaven Institute of Nanotechnology, University of Applied Sciences Bremerhaven, Bremerhaven, Germany
Angst, Manuel ; Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI, JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, Germany
Fenske, Daniela; Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
Konnur, Chinmay M. ; Bremerhaven Institute of Nanotechnology, University of Applied Sciences Bremerhaven, Bremerhaven, Germany
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale et Chimie des matériaux inorganiques (LCIS-GreenMAT)
Sougrati, Moulay Tahar ; Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM-ENSCM, Montpellier, France
Language :
English
Title :
Magnetism and hyperfine interactions in the hexagonal polymorph of delafossite CuFeO2
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Marquardt, M.A., Ashmore, N.A., Cann, D.P., Crystal chemistry and electrical properties of the delafossite structure. Thin Solid Films 496:1 (2006), 146–156, 10.1016/j.tsf.2005.08.316.
Tato, M., Shimonishi, R., Hagiwara, M., Fujihara, S., Reactive templated grain growth and thermoelectric power factor enhancement of textured CuFeO2 ceramics. ACS Appl. Energy Mater. 3:2 (2020), 1979–1987, 10.1021/acsaem.9b02407.
Zhang, M., Zhu, G., Dai, J., Zhu, X., Liu, Q., Li, Q., Fabrication and electrochemical performance of delafossite CuFeO2 particles as a stable anode material for lithium-ion batteries. J. Mater. Sci., Mater. Electron. 29:22 (2018), 19454–19460, 10.1007/s10854-018-0075-0.
Dai, C., Tian, X., Nie, Y., Lin, H.-M., Yang, C., Han, B., Wang, Y., Surface facet of CuFeO2 nanocatalyst: A key parameter for H2O2 activation in Fenton–Like reaction and organic pollutant degradation. Environ. Sci. Technol. 52:11 (2018), 6518–6525, 10.1021/acs.est.8b01448.
Liu, Q.-L., Zhao, Z.-Y., Zhao, R.-D., Yi, J.-H., Fundamental properties of delafossite CuFeO2 as photocatalyst for solar energy conversion. J. Alloy Compd., 819, 2020, 153032, 10.1016/j.jallcom.2019.153032.
Ye, F., Ren, Y., Huang, Q., Fernandez-Baca, J.A., Dai, P., Lynn, J.W., Kimura, T., Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet Cu Fe O 2. Phys. Rev. B, 73(22), 2006, 10.1103/PhysRevB.73.220404.
Terada, N., Mitsuda, S., Fujii, T., Petitgrand, D., Inelastic neutron scattering study of frustrated Heisenberg triangular magnet CuFeO2. J. Phys.: Condens. Matter., 19(14), 2007, 145241, 10.1088/0953-8984/19/14/145241.
Hayashi, K., Nozaki, T., Fukatsu, R., Miyazaki, Y., Kajitani, T., Spin dynamics of triangular lattice antiferromagnet CuFeO 2: Crossover from spin-liquid to paramagnetic phase. Phys. Rev. B, 80(14), 2009, 10.1103/PhysRevB.80.144413.
Klobes, B., Herlitschke, M., Rushchanskii, K.Z., Wille, H.-C., Lummen, T.T.A., van Loosdrecht, P.H.M., Nugroho, A.A., Hermann, R.P., Anisotropic lattice dynamics and intermediate-phase magnetism in delafossite CuFeO 2. Phys. Rev. B, 92(1), 2015, 10.1103/PhysRevB.92.014304.
Terada, N., Khalyavin, D.D., Manuel, P., Tsujimoto, Y., Belik, A.A., Magnetic ordering and ferroelectricity in multiferroic 2H-AgFeO2: Comparison between hexagonal and rhombohedral polytypes. Phys. Rev. B, 91(9), 2015, 094434, 10.1103/PhysRevB.91.094434 publisher: American Physical Society.
Mugnier, E., Barnabé, A., Tailhades, P., Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ion. 177:5 (2006), 607–612, 10.1016/j.ssi.2005.11.026.
Wu, R.F., Pan, W., Liu, S., Li, J., Synthesis of CuFeO2 powder by Sol–Gel method. Key Eng. Mater. 368–372 (2008), 663–665, 10.4028/www.scientific.net/KEM.368-372.663.
Igbinehi, N., Mahmoud, A., Fenske, D., Klobes, B., Doping-dependent phase fractions in hydrothermally synthesized Mn-doped CuFeO2. Phys. Status Solidi A, 219, 2022, 2100713, 10.1002/pssa.202100713.
Effenberger, H., Structure of hexagonal copper(i) ferrite. Acta Crystallogr. C 47:12 (1991), 2644–2646, 10.1107/S0108270191006790.
Jin, Y., Chumanov, G., Solution synthesis of pure 2H CuFeO2 at low temperatures. RSC Adv. 6:31 (2016), 26392–26397, 10.1039/C6RA01901C.
Xiong, D., Qi, Y., Li, X., Liu, X., Tao, H., Chen, W., Zhao, X., Hydrothermal synthesis of delafossite CuFeO2 crystals at 100 °C. RSC Adv. 5:61 (2015), 49280–49286, 10.1039/C5RA08227G.
Jiang, T., Zhao, Y., Liu, M., Chen, Y., Xia, Z., Xue, H., Enhancing the lifetime of photoinduced charge carriers in CuFeO2 nanoplates by hydrothermal doping of Mg for photoelectrochemical water reduction. Phys. Status Solidi A, 215(14), 2018, 1800056, 10.1002/pssa.201800056.
Schuster, A., Radiation through a foggy atmosphere. Astrophys. J. 21 (1905), 1–21, 10.1086/141186.
Kubelka, P., Munk, F., Ein beitrag zur optik der farbanstriche. Z. Tech. Phys. 12 (1931), 593–601.
Petříček, V., Dušek, M., Palatinus, L., Crystallographic computing system JANA2006: General features. Z. Kris. Cryst. Mater. 229:5 (2014), 345–352, 10.1515/zkri-2014-1737.
Hermann, R.P., Keppens, V., Bonville, P., Nolas, G.S., Grandjean, F., Long, G.J., Christen, H.M., Chakoumakos, B.C., Sales, B.C., Mandrus, D., Direct experimental evidence for atomic tunneling of europium in crystalline Eu8Ga16Ge30. Phys. Rev. Lett., 97, 2006, 017401, 10.1103/PhysRevLett.97.017401.
Blake, R.L., Hessevick, R.E., Zoltai, T., Finger, L.W., Refinement of the hematite structure. Am. Mineral. 51:1–2 (1966), 123–129.
Xiong, D., Zhang, Q., Verma, S.K., Bao, X.-Q., Li, H., Zhao, X., Crystal structural, optical properties and mott-schottky plots of p-type Ca doped CuFeO2 nanoplates. Mater. Res. Bull. 83 (2016), 141–147, 10.1016/j.materresbull.2016.05.031.
Siedliska, K., Pikula, T., Surowiec, Z., Panek, R., Idczak, R., Tran, V.H., Jartych, E., Crystal structure and hyperfine interactions of delafossite (CuFeO2) synthesized hydrothermally. Acta Crystallogr. B 77:4 (2021), 570–576, 10.1107/S2052520621005072 publisher: International Union of Crystallography.
Benko, F.A., Koffyberg, F.P., Opto-electronic properties of p- and n-type delafossite, CuFeO2. J. Phys. Chem. Solids 48:5 (1987), 431–434, 10.1016/0022-3697(87)90103-X.
Ong, K.P., Bai, K., Blaha, P., Wu, P., Electronic structure and optical properties of AFeO 2 (A = Ag, Cu) within GGA calculations. Chem. Mater. 19:3 (2007), 634–640, 10.1021/cm062481c.
Deng, Q., Chen, H., Wang, G., Shen, Y., Liu, F., Wang, S., Structural, optical and photoelectrochemical properties of p type Ni doped CuFeO2 by hydrothermal method. Ceram. Int. 46:1 (2020), 598–603, 10.1016/j.ceramint.2019.09.008.
Chang, Y.-H., Wang, H., Siao, T.-F., Lee, Y.-H., Bai, S.-Y., Liao, C.-W., Zhuang, J.-K., Chiu, T.-W., Kuo, C.-H., A new solution route for the synthesis of CuFeO2 and Mg-doped CuFeO2 as catalysts for dye degradation and CO2 conversion. J. Alloy Compd., 854, 2021, 157235, 10.1016/j.jallcom.2020.157235.
Néel, L., Some new results on antiferromagnetism and ferromagnetism. Rev. Modern Phys. 25:1 (1953), 58–63, 10.1103/RevModPhys.25.58.
Jiao, F., Harrison, A., Jumas, J.-C., Chadwick, A.V., Kockelmann, W., Bruce, P.G., Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 128:16 (2006), 5468–5474, 10.1021/ja0584774.
Mugiraneza, S., Hallas, A.M., Tutorial: a beginner's guide to interpreting magnetic susceptibility data with the Curie–Weiss law. Commun. Phys. 5:1 (2022), 1–12, 10.1038/s42005-022-00853-y number: 1 Publisher: Nature Publishing Group.
Takahashi, H., Motegi, Y., Tsuchigane, R., Hasegawa, M., Pressure effect on the antiferromagnetic transition temperature in CuFeO2. J. Magn. Magn. Mater. 272–276 (2004), 216–217, 10.1016/j.jmmm.2003.11.084.
Mitsuda, S., Kasahara, N., Uno, T., Mase, M., Partially disordered phase in frustrated triangular lattice antiferromagnet CuFeO 2. J. Phys. Soc. Japan 67:12 (1998), 4026–4029.
Lee, S.-J., Jung, H., Lee, S., Dho, J., Superparamagnetic behaviour of reentrant weak-ferromagnetic phase in haematite crystal at low temperatures. New J. Phys., 11(2), 2009, 023020, 10.1088/1367-2630/11/2/023020.
Terada, N., Ikedo, Y., Sato, H., Khalyavin, D.D., Manuel, P., Orlandi, F., Tsujimoto, Y., Matsushita, Y., Miyake, A., Matsuo, A., Tokunaga, M., Kindo, K., Difference in magnetic and ferroelectric properties between rhombohedral and hexagonal polytypes of AgFeO 2: A single-crystal study. Phys. Rev. B, 99(6), 2019, 064402, 10.1103/PhysRevB.99.064402.
Choi, D.H., Shim, I.-B., Kim, C.S., Mössbauer study of antiferromagnetic CuFeO2. J. Magn. Magn. Mater. 320:20 (2008), e575–e577, 10.1016/j.jmmm.2008.04.018.
van der Woude, F., Mössbauer effect in α -Fe2O3. Phys. Status Solidi B 17:1 (1966), 417–432, 10.1002/pssb.19660170147.
Sobolev, A., Rusakov, V., Moskvin, A., Gapochka, A., Belik, A., Glazkova, I., Akulenko, A., Demazeau, G., Presniakov, I., 57-Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2. J. Phys.: Condens. Matter, 29(27), 2017, 275803, 10.1088/1361-648X/aa70ae publisher: IOP Publishing.
Ingram, B.J., González, G.B., Mason, T.O., Shahriari, D.Y., Barnabè, A., Ko, D., Poeppelmeier, K.R., Transport and defect mechanisms in cuprous delafossites. 1. Comparison of hydrothermal and standard solid-state synthesis in CuAlO2. Chem. Mater. 16:26 (2004), 5616–5622, 10.1021/cm048983c.
Terada, N., Mitsuda, S., Ohsumi, H., Tajima, K., Spin-driven crystal lattice distortion in frustrated magnet CuFeO2: Synchrotron X-ray diffraction study. J. Phys. Soc. Japan, 75(2), 2006, 023602, 10.1143/JPSJ.75.023602 publisher: The Physical Society of Japan.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.