General Agricultural and Biological Sciences; General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] Plant colonization by Streptomyces scabiei, the main cause of common scab disease on root and tuber crops, is triggered by cello-oligosaccharides, cellotriose being the most efficient elicitor. The import of cello-oligosaccharides via the ATP-binding cassette (ABC) transporter CebEFG-MsiK induces the production of thaxtomin phytotoxins, the central virulence determinants of this species, as well as many other metabolites that compose the ‘virulome’ of S. scabiei. Homology searches revealed paralogues of the CebEFG proteins, encoded by the cebEFG2 cluster, while another ABC-type transporter, PitEFG, is encoded on the pathogenicity island (PAI). We investigated the gene expression of these candidate alternative elicitor importers in S. scabiei 87-22 upon cello-oligosaccharide supply by transcriptomic analysis, which revealed that cebEFG2 expression is highly activated by both cellobiose and cellotriose, while pitEFG expression was barely induced. Accordingly, deletion of pitE had no impact on virulence and thaxtomin production under the conditions tested, while the deletion of cebEFG2 reduced virulence and thaxtomin production, though not as strong as the mutants of the main cello-oligosaccharide transporter cebEFG1. Our results thus suggest that both ceb clusters participate, at different levels, in importing the virulence elicitors, while PitEFG plays no role in this process under the conditions tested. Interestingly, under more complex culture conditions, the addition of cellobiose restored thaxtomin production when both ceb clusters were disabled, suggesting the existence of an additional mechanism that is involved in sensing or importing the elicitor of the onset of the pathogenic lifestyle of S. scabiei.
Disciplines :
Microbiology
Author, co-author :
Francis, Isolde M. ; Department of Biology, California State University, Bakersfield, CA 93311-1022, USA
Bergin, Danica; Department of Biology, California State University, Bakersfield, CA 93311-1022, USA
CSUB - California State University, Bakersfield F.R.S.-FNRS - Fonds de la Recherche Scientifique FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Funding number :
Louis Stokes Alliance for Minority Participation
Funding text :
This research was funded by the CSUB Research Council of the University (RCU), CSUB Faculty Teaching and Learning Center (FTLC), and the Louis Stokes Alliance for Minority Participation (LSAMP-NSF). The work of S.R. and B.D was supported by an Aspirant grants from the FNRS (grant 1.A618.18) and a FRIA grant from the FNRS for S.R. and N.S. (FRIA 1.E.116.21). Transcriptomic analysis was supported by a ‘Crédit De Recherche FNRS grant’ (grant R.FNRS.5240 J.0158.21-CDR).
Wilson D.B. Microbial diversity of cellulose hydrolysis Curr. Opin. Microbiol. 2011 14 259 263 10.1016/j.mib.2011.04.004
Loria R. Kers J. Joshi M. Evolution of plant pathogenicity in Streptomyces Annu. Rev. Phytopathol. 2006 44 469 487 10.1146/annurev.phyto.44.032905.091147 16719719
Wach J.M. Krasnoff S.B. Loria R. Gibson D.M. Effect of carbohydrates on the production of thaxtomin A by Streptomyces scabies Arch. Microbiol. 2007 18 81 88 10.1007/s00203-007-0225-x 17340119
Johnson E.G. Joshi M.V. Gibson D.M. Loria R. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species Physiol. Mol. Plant Pathol. 2007 71 18 25 10.1016/j.pmpp.2007.09.003
Bischoff V. Cookson S.J. Wu S. Scheible W.R. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings J. Exp. Bot. 2009 60 955 965 10.1093/jxb/ern344 19269997
Scheible W.R. Fry B. Kochevenko A. Schindelasch D. Zimmerli L. Somerville S. Loria R. Somerville C.R. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species Plant Cell 2003 15 1781 1794 10.1105/tpc.013342
Deflandre B. Stulanovic N. Planckaert S. Anderssen S. Bonometti B. Krim L. Coppieters W. Devreese B. Rigali S. The virulome of Streptomyces scabiei in response to cello-olligasaccharides Microb. Genom. 2022 8 000760 10.1099/mgen.0.000760
Jourdan S. Francis I.M. Deflandre B. Loria R. Rigali S. Tracking the subtle mutations driving host sensing by the plant pathogen Streptomyces scabies mSphere 2017 2 27144 10.1128/mSphere.00367-16
Jourdan S. Francis I.M. Kim M.J. Salazar J.J.C. Planckaert S. Frère J.M. Matagne A. Kerff F. Devreese B. Loria R. et al. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity Sci. Rep. 2016 2 e00367-16 10.1038/srep27144
Jourdan S. Francis I.M. Deflandre B. Tenconi E. Riley J. Planckaert S. Tocquin P. Martinet L. Devreese B. Loria R. et al. Contribution of the β-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies Mol. Plant Pathol. 2018 19 1480 1490 10.1111/mpp.12631
Joshi M.V. Bignell D.R.D. Johnson E.G. Sparks J.P. Gibson D.M. Loria R. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies Mol. Microbiol. 2007 66 633 642 10.1111/j.1365-2958.2007.05942.x
Francis I.M. Jourdan S. Fanara S. Loria R. Rigali S. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity mBio 2015 6 e02018 10.1128/mBio.02018-14
Deflandre B. Thiébaut N. Planckaert S. Jourdan S. Anderssen S. Hanikenne M. Devreese B. Francis I. Rigali S. Deletion of bglC triggers a genetic compensation response by awakening the expression of alternative beta-glucosidase BBA Gene Regul. Mech. 2020 1863 194615 10.1016/j.bbagrm.2020.194615 32758700
Lerat S. Simao-Beaunoir A.M. Wu R. Beaudoin N. Beaulieu C. Involvement of the plant polymer suberin and the disaccharide cellobiose in triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent Streptomyces scabies Phytopathology 2010 100 91 96 10.1094/PHYTO-100-1-0091
Altschul S.F. Gish W. Miller W. Myers E.W. Lipman D.J. Basic local alignment search tool J. Mol. Biol. 1990 215 403 410 10.1016/S0022-2836(05)80360-2
Lemoine F. Correia D. Lefort V. Doppelt-Azeroual O. Mareuil F. Cohen-Boulakia S. Gascuel O. NGPhylogeny.fr: New generation phylogenetic services for non-specialists Nucleic Acids Res. 2019 47 W260 W265 10.1093/nar/gkz303 31028399
Hiard S. Marée R. Colson S. Hoskisson P. Titgemeyer F. van Wezel G.V. Joris B. Wehenkel L. Rigali S. PREDetector: A new tool to identify regulatory elements in bacterial genomes Biochem. Biophys. Res. Commun. 2007 357 861 864 10.1016/j.bbrc.2007.03.180 17451648
Anderssen S. Naômé A. Jadot C. Brans A. Tocquin P. Rigali S. AURTHO: Autoregulation of transcription factors as facilitator of cis-acting element discovery BBA Gene Regul. Mech. 2022 1865 194847 10.1016/j.bbagrm.2022.194847 35901946
Gust B. Challis G.L. Fowler K. Kieser T. Chater K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin Proc. Natl. Acad. Sci. USA 2003 100 1541 1546 10.1073/pnas.0337542100
Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. et al. Highly accurate protein structure prediction with AlphaFold Nature 2021 596 583 589 10.1038/s41586-021-03819-2
Schlösser A. Jantos J. Hackmann K. Schrempf H. Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli Appl. Environ. Microbiol. 1999 65 2636 2643 10.1128/AEM.65.6.2636-2643.1999 10347054
Marushima K. Ohnishi Y. Horinouchi S. CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus J. Bacteriol. 2009 191 5930 10.1128/JB.00703-09 19648249
Bukhalid R.A. Takeuchi T. Labeda D. Loria R. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the Diastatochromogenes cluster Appl. Environ. Microbiol. 2002 68 738 744 10.1128/AEM.68.2.738-744.2002 11823214
Schlösser A. Aldekamp T. Schrempf H. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli FEMS Microbiol. Lett. 2000 190 127 132 10.1016/S0378-1097(00)00304-9
Book A.J. Lewin G.R. McDonald B.R. Takasuka T.E. Doering D.T. Adams A.S. Blodgett J.A. Clardy J. Raffa K.F. Fox B.G. et al. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose Appl. Environ. Microbiol. 2014 80 4692 4701 10.1128/AEM.01133-14
Bertram R. Schlicht M. Mahr K. Nothaft H. Saier M.H. Titgemeyer F. In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2) J. Bacteriol. 2004 186 1362 1373 10.1128/JB.186.5.1362-1373.2004
Hurtubise Y. Shareck F. Kluepfel D. Morosoli R. A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins Mol. Microbiol. 1995 17 367 377 10.1111/j.1365-2958.1995.mmi_17020367.x
MacNeil D.J. Gewain K.M. Ruby C.L. Dezeny G. Gibbons P.H. MacNeil T. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integrative vector Gene 1992 111 61 68 10.1016/0378-1119(92)90603-M
Loria R. Bukhalid R.A. Creath R.A. Leiner R.H. Olivier M. Steffens J.C. Differential production of thaxtomins by pathogenic Streptomyces species in vitro Phytopathology 1995 85 537 541 10.1094/Phyto-85-537
Bignell D.R.D. Huguet-Tapia J.C. Joshi M.V. Pettis G.S. Loria R. What does it take to be a plant pathogen: Genomic insights from Streptomyces species Antonie Van Leeuwenhoek 2010 98 179 194 10.1007/s10482-010-9429-1
Bignell D.R.D. Seipke R.F. Huguet-Tapia J.C. Chambers A.H. Parry R.J. Loria R. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions Mol. Plant Microbe Interact. 2010 23 161 175 10.1094/MPMI-23-2-0161 20064060
Hudec C. Biessy A. Novinscak A. St-Onge R.J. Lamarre S. Blom J. Fillion M. Comparative genomics of potato common scab-causing Streptomyces spp. displaying varying virulence Front. Microbiol. 2021 12 716522 10.3389/fmicb.2021.716522 34413844
Zhang Y. Bignell D.R.D. Zuo R. Fan Q. Huguet-Tapia J.C. Ding Y. Loria R. Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp. Mol. Plant Microb. Interact. 2016 29 640 650 10.1094/MPMI-04-16-0068-R
Labeda D.P. Goodfellow M. Brown R. Ward A.C. Lanoot B. Vanncanneyt M. Swings J. Kim S.B. Liu Z. Chun J. et al. Phylogenetic study of the species within the family Streptomycetaceae Antonie Van Leeuwenhoek 2012 101 73 104 10.1007/s10482-011-9656-0
Tomihama T. Nishi Y. Sakai M. Ikenaga M. Okubo T. Ikeda S. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan Genome Announc. 2016 4 e00062-16 10.1128/genomeA.00062-16 26941144
Croce V. López-Radcenco A. Lapaz M.I. Pianzzola M.J. Moyna G. Siri M.I. An integrative approach for the characterization of plant-pathogenic Streptomyces spp. strains based on metabolomic, bioactivity, and phylogenetic analysis Front. Microbiol. 2021 12 643792 10.3389/fmicb.2021.643792 33828541
Corrêa D.B.A. do Amaral D.T. da Silva M.J. Destéfano S.A.L. Sterptomyces brasiliscabiei, a new species causing potato scab in south Brazil Antonie Van Leeuwenhoek 2021 114 913 931 10.1007/s10482-021-01566-y
USDA Agricultural Research Service Whole-Genome Sequencing NRRL B-16521 and NRRL B-2795. National Center for Biotechnology Information 2022 Available online: https://data.nal.usda.gov/dataset/whole-genome-sequencing-nrrl-b-16521-and-nrrl-b-2795 (accessed on 30 December 2022)
Clark C. Chen C. Ward-Rainey N. Pettis G.S. Diversity within Streptomyces ipomoeae based on inhibitory interactions, rep-PCR, and plasmid profiles Phytopathology 1998 88 1179 1186 10.1094/PHYTO.1998.88.11.1179
Huguet-Tapia J.C. Lefébure T. Badger J.H. Guan D. Pettis G.S. Stanhope M.J. Loria R. Genome content and phylogenomics reveal both ancestral and lateral evolutionary pathways in plant pathogenic Streptomyces species Appl. Environ. Microbiol. 2016 82 2146 2155 10.1128/AEM.03504-15
USDA/ARS/NCAUR Streptomyces Europaeiscabiei Strain: NRRL B-24443 Genome Sequencing and Assembly. National Center for Biotechnology Information 2022 Available online: https://data.nal.usda.gov/dataset/streptomyces-europaeiscabiei-strainnrrl-b-24443-genome-sequencing-and-assembly (accessed on 30 December 2022)
USDA/ARS/NCAUR Streptomyces Stelliscabiei Strain: NRRL B-24447 Genome Sequencing and Assembly. National Center for Biotechnology Information 2022 Available online: https://data.nal.usda.gov/dataset/streptomyces-stelliscabiei-strainnrrl-b-24447-genome-sequencing-and-assembly (accessed on 30 December 2022)
Huguet-Tapia J.C. Loria R. Draft genome sequence of Streptomyces acidiscabies 84-104, an emergent plant pathogen J. Bacteriol. 2012 194 1847 10.1128/JB.06767-11
Zhang Y. Loria R. Emergence of novel pathogenic Streptomyces by site-specific accretion and cis-mobilization of pathogenicity islands Mol. Plant Microbe Interact. 2017 30 72 82 10.1094/MPMI-09-16-0190-R 27977935
Park D.H. Kim J.S. Kwon S.W. Wilson C. Yu Y.M. Hur J.H. Lim C.K. Streptomyces luridiscabiei sp. nov. Streptomyces puniciscabiei sp. nov. and Streptomyces niveiscabiei sp. nov. which cause potato common scab disease in Korea Int. J. Syst. Evol. Microbiol. 2003 53 2049 2054 10.1099/ijs.0.02629-0 14657144
Nguyen H. Weisberg A.J. Chang J.H. Clarke C.R. Streptomyces caniscabiei sp. nov., which causes potato common scab and is distributed across the world Int. J. Syst. Evol. Microbiol. 2022 72 005225 10.1099/ijsem.0.005225 35085064
Bouchek-Mechiche K. Gardan L. Normand P. Jouan B. DNA relatedness among strains of Streptomyces pathogenic to potato in France: Description of three new species, S. europaeiscabiei sp. nov. and S. stelliscabiei sp. nov. associated with common scab, and S. reticuliscabiei sp. nov. associated with netted scab Int. J. Syst. Evol. Microbiol. 2000 50 91 99 10.1099/00207713-50-1-91
Huguet-Tapia J.C. Badger J.H. Loria R. Pettis G.S. Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens Plasmid 2011 65 118 124 10.1016/j.plasmid.2010.11.002 21087627
Ohnishi Y. Ishikawa J. Hara H. Suzuki H. Ikenoya M. Ikeda H. Yamashita A. Hattori M. Horinouchi S. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350 J. Bacteriol. 2008 190 4050 4060 10.1128/JB.00204-08