Article (Périodiques scientifiques)
Breast cancer survival analysis agents for clinical decision support.
Manzo, Gaetano; Pannatier, Yvan; Duflot, Patrick et al.
2023In Computer Methods and Programs in Biomedicine, 231, p. 107373
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
1-s2.0-S0169260723000408-main.pdf
Postprint Auteur (1.85 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Decision-system; Machine learning; Modular architecture; Survival analysis; Assistive technology; Breast Cancer; Clinical decision support; Condition; Decision systems; Machine-learning; Modular architectures; Physical exercise; Quality of life; Software; Health Informatics; Computer Science Applications
Résumé :
[en] Personalized support and assistance are essential for cancer survivors, given the physical and psychological consequences they have to suffer after all the treatments and conditions associated with this illness. Digital assistive technologies have proved to be effective in enhancing the quality of life of cancer survivors, for instance, through physical exercise monitoring and recommendation or emotional support and prediction. To maximize the efficacy of these techniques, it is challenging to develop accurate models of patient trajectories, which are typically fed with information acquired from retrospective datasets. This paper presents a Machine Learning-based survival model embedded in a clinical decision system architecture for predicting cancer survivors' trajectories. The proposed architecture of the system, named PERSIST, integrates the enrichment and pre-processing of clinical datasets coming from different sources and the development of clinical decision support modules. Moreover, the model includes detecting high-risk markers, which have been evaluated in terms of performance using both a third-party dataset of breast cancer patients and a retrospective dataset collected in the context of the PERSIST clinical study.
Disciplines :
Oncologie
Sciences informatiques
Auteur, co-auteur :
Manzo, Gaetano ;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland, National Institutes of Health (NIH), Bethesda, MD, USA. Electronic address: gaetano.manzo@nih.gov
Pannatier, Yvan;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
Duflot, Patrick  ;  Centre Hospitalier Universitaire de Liège - CHU > > Secteur Appui méthodologique aux Projets GSI et Planification (APP)
Kolh, Philippe  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service des informations médico économiques (SIME)
Chavez, Marcela;  CHU of Liege, Department of Information System Management, Belgium
Bleret, Valerie ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de sénologie
Calvaresi, Davide;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
Jimenez-Del-Toro, Oscar;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
Schumacher, Michael;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland
Calbimonte, Jean-Paul;  University of Applied Sciences and Arts Western Switzerland (HES-SO), Switzerland, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
Langue du document :
Anglais
Titre :
Breast cancer survival analysis agents for clinical decision support.
Date de publication/diffusion :
25 janvier 2023
Titre du périodique :
Computer Methods and Programs in Biomedicine
ISSN :
0169-2607
eISSN :
1872-7565
Maison d'édition :
Elsevier Ireland Ltd, Irlande
Volume/Tome :
231
Pagination :
107373
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 875406 - PERSIST - Patients-centered SurvivorShIp care plan after Cancer treatments based on Big Data and Artificial Intelligence technologies
Organisme subsidiant :
EC - European Commission
University of Applied Sciences and Arts Western Switzerland
NIH - National Institutes of Health
Subventionnement (détails) :
This work was partially supported by the H2020 Project PERSIST under grant agreement No. 875406. The authors gratefully acknowledge the helpful remarks from Dina Demner-Fushman (National Institute of Health).
Disponible sur ORBi :
depuis le 13 février 2023

Statistiques


Nombre de vues
138 (dont 7 ULiège)
Nombre de téléchargements
130 (dont 1 ULiège)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
9
OpenCitations
 
0
citations OpenAlex
 
15

Bibliographie


Publications similaires



Contacter ORBi