ADTree; Confusion matrix; KNN; Landslides; Machine learning; Adtree; Artificial neural network modeling; High capacity; High-accuracy; High-capacity; Kurdistan; Machine learning algorithms; Performance; Global and Planetary Change; Environmental Chemistry; Water Science and Technology; Soil Science; Pollution; Geology; Earth-Surface Processes
Abstract :
[en] The present study aims to compare the performance of artificial neural networks (ANN), statistical methods, and machine learning in predicting the location of landslides in Marivan and Sarvabad cities in Kurdistan province of Iran. 16 factors influencing landslide occurrence are first chosen, such as aspect and elevation, plan curvature and profile curvature, slope degree, land use and geology, distance from faults, rivers and roads, rainfall, NDVI, SPI, STI, TRI and TWI. Then, the correlation between the factors affecting landslides and the ANN model was estimated through the FR method with 0.83% accuracy of the variable significance in the modeling, and the landslide sensitive zones were mapped in five classes (very high, high, medium, low, and very low). The results of the modeling analysis indicated that more than 70% of the study areas have high and very high sensitivity to the occurrence of amplitude movements. The accuracy of the prediction performance of the models used on the data (test-data and train-data) has been obtained 0.82, 0.83 and 1 with ANN, KNN and ADTree, respectively. Then, the efficiency of the models for prediction operations were evaluated with the classification matrix algorithm and the variables’ accuracy, sensitivity, and specificity. The findings of this stage showed that efficiency of the KNN was %74 and in ADTree algorithm was equal to 1. Therefore, results showed that in the comparison between the models used the ADTree algorithm has high accuracy and capacity to classify and predict the areas sensitive to landslides. Therefore, results showed that in the comparison between the models used the ADTree algorithm has high accuracy and capacity to classify and predict the areas sensitive to landslides. Besides, it can be utilized as the most efficient model in landslide disaster management.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Khezri, Saeed; Faculty of Natural Resources, Department of Geomorphology, University of Kurdistan, Sanandaj, Iran
Ahmadi Dehrashid, Atefeh ; Faculty of Natural Resources, Department of Geomorphology, University of Kurdistan, Sanandaj, Iran ; Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran ; Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Nasrollahizadeh, Bahram; Department of Climatology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
Moayedi, Hossein; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam ; Faculty of Civil Engineering, Duy Tan University, Da Nang, Viet Nam
Ahmadi Dehrashid, Hossein; Department of Human Geography, Faculty of Geography, University of Tehran, Tehran, Iran
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
Scheffran, Jürgen; Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
Language :
English
Title :
Prediction of landslides by machine learning algorithms and statistical methods in Iran
Publication date :
June 2022
Journal title :
Environmental Earth Sciences
ISSN :
1866-6280
eISSN :
1866-6299
Publisher :
Springer Science and Business Media Deutschland GmbH
Achour Y, Boumezbeur A, Hadji R, Chouabbi A, Cavaleiro V, Bendaoud EA (2017) Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab J Geosci 10:194. 10.1007/s12517-017-2980-6 DOI: 10.1007/s12517-017-2980-6
Agostini A, Tofani V, Nolesini T, Gigli G, Tanteri L, Rosi A, Cardellini S, Casagli N (2014) A new appraisal of the ancona landslide based on geotechnical investigations and stability modelling. Q J Eng Geol Hydrogeol 47:29–43. 10.1144/qjegh2013-028 DOI: 10.1144/qjegh2013-028
Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision and likelihood ratio methods: a case study at ˙Izmir, Turkey. Landslides 9:93–106. 10.1007/s10346-011-0283-7 DOI: 10.1007/s10346-011-0283-7
Akgun A, Kıncal C, Pradhan B (2012) Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ Monit Ass 184:5453–5470. 10.1007/s10661-011-2352-8 DOI: 10.1007/s10661-011-2352-8
Alijani B, Roshani A, Parak F, Heydari R (2012) Trends in extreme daily temperature using climate change indices in Iran. J Geogr Environ Hazards 1(2):17–28. 10.22067/geo.v1i2.18617 DOI: 10.22067/geo.v1i2.18617
Alvioli M, Melillo M, Guzzetti F, Rossi M, Palazzi E, Von Hardenberg J, Brunetti MT, Peruccacci S (2018) Implications of climate change on landslide hazard in central Italy. Sci Total Environ 630:1528–1543. 10.1016/j.scitotenv.2018.02.315 DOI: 10.1016/j.scitotenv.2018.02.315
Arabameri A, Rezaei K, Pourghasemi HR, Lee S, Yamani M (2018) GIS-based gully erosion susceptibility mapping a comparison among three data-driven models and AHP knowledge-: based technique. Environ Earth Sci 77:628. 10.1007/s12665-018-7808-5 DOI: 10.1007/s12665-018-7808-5
Arabameri A, Pradhan B, Rezaei Kh, Lee Ch (2019a) Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR–RF integrated model and multiresolution DEMs. Remote Sense 11:999. 10.3390/rs11090999 DOI: 10.3390/rs11090999
Arabameri A, Pradhan B, Rezaei K, Sohrabi M, Kalantari Z (2019b) GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J Mt Sci 16:595–618. 10.1007/s11629-018-5168-y DOI: 10.1007/s11629-018-5168-y
Arabameri A, Pourghasemi H. R, Yamani M (2017) Applying different scenarios for landslide spatial modeling using computational intelligence methods. Environ. Earth Sci 76:832. https://www.springerprofessional.de
Arnone E, Francipane A, Noto L, Scarbaci A, La Loggia G (2014) Strategies investigation in using artificial neural network for landslide susceptibility mapping: application to a Sicilian catchment. J Hydroinform 16:502–515. 10.2166/hydro.2013.191 DOI: 10.2166/hydro.2013.191
Berberian M, King G (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265. 10.1139/e81-019 DOI: 10.1139/e81-019
Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012a) Spatial prediction of landslide hazards in hoa binh province (vietnam): a comparative assessment of the e_cacy of evidential belief functions and fuzzy logic models. CATENA 96:28–40. 10.1016/j.catena.2012.04.001 DOI: 10.1016/j.catena.2012.04.001
Bui DT, Pradhan B, Lofman O, Revhaug I, Dick OB (2012b) Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology 171:12–29. 10.1155/2012/974638 DOI: 10.1155/2012/974638
Bui DT, Pradhan B, Revhaug I, Nguyen DB, Pham HV, Bui QN (2015) A novel hybrid evidential belief function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang son city area (Vietnam). Geomat Nat Haz Risk 6:243–271. 10.1080/19475705.2013.843206 DOI: 10.1080/19475705.2013.843206
Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016a) Spatial prediction models for shallow landslide hazards: a comparative assessment of the e_cacy of support vector machines, artificial neural networks, kernel logistic regression and logistic model tree. Landslides 13:361–378. 10.1007/s10346-015-0557-6 DOI: 10.1007/s10346-015-0557-6
Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug IS (2016b) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378. 10.1007/s10346-015-0557-6 DOI: 10.1007/s10346-015-0557-6
Bui DT, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi K, Panahi M, Bin Ahmad B, Saro L (2018) Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors 18(8):2464. 10.3390/s18082464 DOI: 10.3390/s18082464
Bui DT, Moayedi H, Kalantari B, Osouli A, Pradhan B, Nguyen H, Safuan A, Safuan R (2019) A novel swarm intelligence—Harris Hawks optimization for spatial assessment of landslide susceptibility. Sensors 19(16):3590. 10.3390/s19163590 DOI: 10.3390/s19163590
Cama M, Conoscenti C, Lombardo L, Rotigliano E (2016) Exploring relationships between grid cell size and accuracy for debris-flow susceptibility models: a test in the Giampilieri catchment (Sicily, Italy). Environ Earth Sci 75:238. 10.1007/s12665-015-5047-6 DOI: 10.1007/s12665-015-5047-6
Chang JM, Chen H, Jou BJD, Tsou NC, Lin GW (2017) Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Eng Geol 231:81–87. 10.1016/j.enggeo.2017.10.006 DOI: 10.1016/j.enggeo.2017.10.006
Chen W, Pourghasemi HR, Panahi M, Kornejady A, Wang J, Xie X, Cao S (2017a) Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model and support vector machine techniques. Geomorphology 297:69–85. 10.1016/j.geomorph.2017.09.007 DOI: 10.1016/j.geomorph.2017.09.007
Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J (2017b) A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147–160. 10.1016/j.catena.2016.11.032 DOI: 10.1016/j.catena.2016.11.032
Cheng MY, Ko CH (2003) Hybrid use of Al techniques in developing construction management tools. Autom Constr 12(3):271–281. 10.1016/S0926-5805(02)00091-2 DOI: 10.1016/S0926-5805(02)00091-2
Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression and artificial neural network models using aster images and GIS. Eng Geol 124:12–23. 10.1016/j.enggeo.2011.09.011 DOI: 10.1016/j.enggeo.2011.09.011
Costanzo D, Chacón J, Conoscenti C, Irigaray C, Rotigliano E (2014) Forward logistic regression for earth flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides 11:639–653. 10.1007/s10346-013-0415-3 DOI: 10.1007/s10346-013-0415-3
Cruden D (1991) A simple definition of a landslide. Bul Eng Geol Environ 43:27–29
Dowling CA, Santi PM (2014) Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat Hazards 71:203–227. 10.1007/BF02590167 DOI: 10.1007/BF02590167
Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343. 10.1016/j.geomorph.2004.09.025 DOI: 10.1016/j.geomorph.2004.09.025
Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102:85–98. 10.1016/j.enggeo.2008.03.022 DOI: 10.1016/j.enggeo.2008.03.022
Fell R, Hartford D (1997) Landslide risk management. In: Landslide risk assessment, proceeding of the international workshop in landslide risk assessment; Balkema: Rotterdam. The Netherlands, published by Thomas telford publishing, pp 51–109. www.ndl.ethernet.edu.et
Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252. 10.1016/j.earscirev.2016.08.011 DOI: 10.1016/j.earscirev.2016.08.011
Gelisli K, Kaya T, Babacan AE (2015) Assessing the factor of safety using an artificial neural network: case studies on landslides in Giresun, Turkey. Environ Earth Sci 73:8639–8646. 10.1007/s12665-015-4027-1 DOI: 10.1007/s12665-015-4027-1
Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129:376–386. 10.1016/j.geomorph.2011.03.001 DOI: 10.1016/j.geomorph.2011.03.001
Hong H, Pradhan B, Xu C, Bui DT (2015) Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. CATENA 133:266–281. 10.1016/j.catena.2015.05.019 DOI: 10.1016/j.catena.2015.05.019
Hou X, Vanapalli SK, Li T (2018) Water infiltration characteristics in loess associated with irrigation activities and itsinfluence on the slope stability in heifangtai loess highland, China. Eng Geol 234:27–37. 10.1016/j.enggeo.2017.12.020 DOI: 10.1016/j.enggeo.2017.12.020
Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) Landslide susceptibility zonation (LSZ) mapping: a review. J South Asia Disaster Stud 2(1):81–105
Kavzoglu T, Kutlug Sahin E, Colkesen I (2014) An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat Hazards 76:471–496. 10.1007/s11069-014-1506-8 DOI: 10.1007/s11069-014-1506-8
Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C (2019) Landslide susceptibility assessment using frequency ratio, a case study of northern Pakistan. Egypt J Remote Sens Space Sci 22(1):11–24. 10.1016/j.ejrs.2018.03.004 DOI: 10.1016/j.ejrs.2018.03.004
Khezri S (2011) Landslide susceptibility in the Zab Basin, northwest of Iran. Procedia-Social and Behav Sci 19:726–731. 10.1016/j.sbspro.2011.05.191 DOI: 10.1016/j.sbspro.2011.05.191
Khezri S, Ahmadi Dehrashid A, Bijani M, Valizadeh N, Nasrollahizadeh B, Izadi F, Ahmadi Dehrashid H, Azadi H, Scheffran J (2021) Resilience of human settlements against landslide risk: The case of Kurdistan Province. Iran. Land Degrad Dev 32(18):5360–5377. 10.1002/ldr.4114 DOI: 10.1002/ldr.4114
Kim HG, Lee DK, Park C, Kil S, Son Y, Park JH (2015) Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environ earth sci 73(3):1385–1400. 10.1007/s12665-014-3775-7
Kumar R, Anbalagan R (2015) Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. J Earth Syst Sci 124:431–448. 10.1007/s12040-015-0536-2 DOI: 10.1007/s12040-015-0536-2
Lee S, Ryu JH, Lee MJ, Won JS (2006) The application of artificial neural networks to landslide susceptibility mapping at Janghung, Korea. Math Geol 38:199–220. 10.1007/s11004-005-9012-x DOI: 10.1007/s11004-005-9012-x
Lin L, Lin Q, Wang Y (2017) Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazards Earth Syst Sci 17:1411–1424. 10.5194/nhess-17-1411-2017 DOI: 10.5194/nhess-17-1411-2017
Liucci L, Melelli L, Suteanu C, Ponziani F (2017) The role of topography in the scaling distribution of landslide areas: a cellular automata modeling approach. Geomorphology 290:236–249. 10.1016/j.geomorph.2017.04.017 DOI: 10.1016/j.geomorph.2017.04.017
Moayedi H, Bui DT, Kalantar B, Osouli A, Gör M, Pradhan B, Nguyen H, Rashid ASA (2019) Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility Sensors (Switzerland). https://doi.org/10.3390/s19163590
Mohammadi S, Taiebat H (2016) Finite element simulation of an excavation-triggered landslide using large deformation theory. Eng Geol 205:62–72. 10.1016/j.enggeo.2016.02.012 DOI: 10.1016/j.enggeo.2016.02.012
Mondal S, Maiti R (2013) Integrating the analytical hierarchy process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. Int J Disaster Risk Sci 4(4):200–212. 10.1007/s13753-013-0021-y DOI: 10.1007/s13753-013-0021-y
Neaupane KM, Piantanakulchai M (2006) Analytic network process model for landslide hazard zonation. Eng Geol 85:281–294. 10.1016/j.enggeo.2006.02.003 DOI: 10.1016/j.enggeo.2006.02.003
Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use logistic regression and artificial neural network with different sampling for the preparation of landslides susceptibility maps. Eng Geol 97:171–191. 10.1016/j.enggeo.2008.01.004 DOI: 10.1016/j.enggeo.2008.01.004
Nicu L (2018) Application of analytic hierarchy process, frequency ratio, and statistical index to landslide susceptibility: an approach to endangered cultural heritage. Environ Earth Sci 77:79. 10.1007/s12665-018-7261-5 DOI: 10.1007/s12665-018-7261-5
Nohani E, Moharrami M, Sharafi S, Khosravi K, Pradhan B, Pham BT, Lee S, Melesse M, A, (2019) Landslide susceptibility mapping using diferent GIS-based bivariate models. Water 11(7):1420. 10.3390/w11071402 DOI: 10.3390/w11071402
Ozdemir A (2011) GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J Hydrol 411:290–308. 10.1016/j.jhydrol.2011.10.010 DOI: 10.1016/j.jhydrol.2011.10.010
Pal SC, Chowdhuri I (2019) GIS-based spatial prediction of landslide susceptibility using frequency ratio model of lachung river basin, North Sikkim, India. SN Appl Sci 1(5):1–25. 10.1007/s42452-019-0422-7 DOI: 10.1007/s42452-019-0422-7
Park S, Choi C, Kim B, Kim J (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443–1464. 10.1007/s12665-012-1842-5 DOI: 10.1007/s12665-012-1842-5
Peng D, Xu Q, Liu F, He Y, Zhang S, Qi X, Zhao K, Zhang X (2018) Distribution and failure modes of the landslides in Heitai terrace, China. Eng Geol 236:97–110. 10.1016/j.enggeo.2017.09.016 DOI: 10.1016/j.enggeo.2017.09.016
Peres DJ, Cancelliere A (2018) Modeling impacts of climate change on return period of landslide triggering. J Hydrol 567:420–434. 10.1016/j.jhydrol.2018.10.036 DOI: 10.1016/j.jhydrol.2018.10.036
Persichillo MG, Bordoni M, Meisina C (2017) The role of land use changes in the distribution of shallow landslides. Sci Total Environ 574:924–937. 10.1016/j.scitotenv.2016.09.125 DOI: 10.1016/j.scitotenv.2016.09.125
Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930. 10.1130/G33217.1 DOI: 10.1130/G33217.1
Pham BT, Jaafari A, Prakash I, Bui DT (2019a) A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bull Eng Geol Environ 78(4):2865–2886. 10.1007/s10064-018-1281-y DOI: 10.1007/s10064-018-1281-y
Pham BT, Prakash I, Khosravi K, Chapi K, Trinh PT, Ngo TQ, Hosseini SV, Bui DT (2019b) A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto Int 34(13):1385–1407. 10.1080/10106049.2018.1489422 DOI: 10.1080/10106049.2018.1489422
Pham BT, Pradhan B, Bui DT, Prakash I, Dholakia MB (2016b) A comparative study of di_erent machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw 84:240–250. 10.1016/j.envsoft.2016.07.005 DOI: 10.1016/j.envsoft.2016.07.005
Pham BT, Bui DT, Prakash I, Dholakia M (2016a) Evaluation of predictive ability of support vector machines and naive bayes trees methods for spatial prediction of landslides in Uttarakhand state (India) using GIS. J Geom 10 (1):71–79. https://isgindia.org/JOG/abstracts/APR-2016a/pap012.pdf
Pham BT, Prakash I, Khosravi K, Chapi K, Trinh PT, Ngo TQ, Hosseini SV, Bui DT (2019) A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto Int 34(13):1385–1407. 10.1080/10106049.2018.1489422 DOI: 10.1080/10106049.2018.1489422
Pourghasemi HR, Rossi M (2016) Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theor Appl Climatol 130(1–2):609–633. 10.1007/s00704-016-1919-2 DOI: 10.1007/s00704-016-1919-2
Pourghasemi HR, Moradi H, Aghda SF (2013) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779. 10.1007/s11069-013-0728-5 DOI: 10.1007/s11069-013-0728-5
Pradhan B (2010) Remote sensing and gis-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256. 10.1016/j.asr.2010.01.006 DOI: 10.1016/j.asr.2010.01.006
Pradhan B (2011) Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. Int J Remote Sens 32:4075–4087. 10.1080/01431161.2010.484433 DOI: 10.1080/01431161.2010.484433
Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in andslide susceptibility mapping using GIS. Comput Geosci 51:350–365. 10.1016/j.cageo.2012.08.023 DOI: 10.1016/j.cageo.2012.08.023
Pradhan B, Lee S (2010) Delineation of landslides hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression and artificial neural network models. Environ Earth Sci 60:1037–1054. 10.1007/s12665-009-0245-8 DOI: 10.1007/s12665-009-0245-8
Razavizadeh S, Solaimani K, Massironi M, Kavian A (2017) Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran. Environ Earth Sci 76:499. 10.1007/s12665-017-6839-7 DOI: 10.1007/s12665-017-6839-7
Regmi AD, Devkota KC, Yoshida K, Pradhan B, Pourghasemi HR, Kumamoto T, Akgun A (2014) Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arab J Geosci 7:725–742. 10.1007/s12517-012-0807-z DOI: 10.1007/s12517-012-0807-z
Roșian G, Csaba H, Kinga-Olga R, Boțan CN, Gavrilă IG (2016) Assessing landslide vulnerability using statistical analysis and the frequency ratio model. Case study: Transylvanian Plain (Romania). Geomorphology 60(4):359–371. 10.1127/zfg/2016/0404 DOI: 10.1127/zfg/2016/0404
Segoni S, Rosi A, Lagomarsino D, Fanti R, Casagli N (2018) Brief communication: using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat Hazard 18:807–812. 10.5194/nhess-18-807-2018 DOI: 10.5194/nhess-18-807-2018
Sok HK, Ooi MPL, Kuang YC, Demidenko S (2016) Multivariate alternating decision trees. Pattern Recognit 50:195–209. 10.1016/j.patcog.2015.08.014 DOI: 10.1016/j.patcog.2015.08.014
Song Y, Niu R, Xu S, Ye R, Peng L, Guo T, Li S, Chen T (2018) Landslide susceptibility mapping based on weighted gradient boosting decision tree in Wanzhou section of the Three Gorges Reservoir area (China). ISPRS Int J Geo-Inf 8(1):4. 10.3390/ijgi8010004 DOI: 10.3390/ijgi8010004
Stanley T, Kirschbaum DB (2017) A heuristic approach to global landslide susceptibility mapping. Nat Hazards 87:145–164. 10.1007/s11069-017-2757-y DOI: 10.1007/s11069-017-2757-y
Stevenson PC (1977) An empirical method for the evaluation of relative landslip risk. Bull Int Assoc Eng Geol 16(1):69–72. 10.1007/BF02591451 DOI: 10.1007/BF02591451
Tay LT, Lateh H, Hossain MK, Kamil AA (2014) Landslide hazard mapping using a poisson distribution: a case study in Penang Island, Malaysia. In: Landslide science for a safer geoenvironment. Springer, Cham, pp 521–525. https://doi.org/10.1007/978-3-319-05050-8_80
Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of logistic regression and random forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136. 10.1016/j.geomorph.2015.06.001 DOI: 10.1016/j.geomorph.2015.06.001
Trigila A, Frattini P, Casagli N, Catani F, Crosta G, Esposito C, Iadanza C, Lagomarsino D, Mugnozza G. S, Segoni S, Spizzichino D (2013) Landslide susceptibility mapping at national scale: the Italian case study. In: Landslide science and practice. Springer, Berlin, pp 287–295. https://doi.org/10.1007/978-3-642-31325-7_38
Tsai F, Lai JS, Chen WW, Lin TH (2013) Analysis of topographic and vegetative factors with data mining for and slide verification. Ecol Eng 61:669–677. 10.1016/j.ecoleng.2013.07.070 DOI: 10.1016/j.ecoleng.2013.07.070
Tsangaratos P, Ilia I (2016) Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size. CATENA 145:164–179. 10.1016/j.catena.2016.06.004 DOI: 10.1016/j.catena.2016.06.004
Wang HB, Sassa K (2005) Comparative evaluation of landslide susceptibility in Minamata area, Japan. Environ Geol 47(7):956–966. 10.1007/s00254-005-1225-2 DOI: 10.1007/s00254-005-1225-2
Wang YT, Seijmonsbergen AC, Bouten W, Chen QT (2015) Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. J Mt Sci 12:268–288. 10.1007/s11629-014-3134-x DOI: 10.1007/s11629-014-3134-x
Wang T, Wu SR, Shi JS, Xin P, Wu LZ (2018) Assessment of the effects of historical strong earthquakes on large-scale landslide groupings in the wei river midstream. Eng Geol 235:11–19. 10.1016/j.enggeo.2018.01.020 DOI: 10.1016/j.enggeo.2018.01.020
Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y, Sun S (2016) Application of analytic hierarchy process model for landslide susceptibility mapping in the Gangu County, Gansu Province, China. Environ Earth Sci 75(5):1–11. 10.1007/s12665-015-5194-9 DOI: 10.1007/s12665-015-5194-9
Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in ardesen (turkey): Comparisons of results and confirmations. CATENA 72:1–12. 10.1016/j.catena.2007.01.003 DOI: 10.1016/j.catena.2007.01.003
Yamani M, Ahmadabadi A, Zare R (2012) The Zonation of landslide occurrence Using of Support Vector Machines algorithm (Case Study: Darakeh Basin). J Geogr Environ Hazards 1(3):125–142. 10.22067/geo.v1i3.17461 DOI: 10.22067/geo.v1i3.17461
Youssef AM, Al-Kathery M, Pradhan B (2015) Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geoscience 19:113–134. 10.1007/s12303-014-0032-8 DOI: 10.1007/s12303-014-0032-8
Zhang T, Han L, Han J, Li X, Zhang H, Wang H (2019) Assessment of Landslide Susceptibility using integrated ensemble fractal dimension with kernel logistic regression model. Entropy 21(2):218. 10.3390/e21020218 DOI: 10.3390/e21020218
Zhang YG, Tang J, Liao RP, Zhang MF, Zhang Y, Wang XM, Su ZY (2021) Application of an enhanced BP neural network model with water cycle algorithm on landslide prediction. Stoch Environ Res Risk Assess 35(6):1273–1291. 10.1007/s00477-020-01920-y DOI: 10.1007/s00477-020-01920-y
Zhou C, Yin K, Cao Y, Ahmed B, Li Y, Catani F, Pourghasemi HR (2018) Landslide susceptibility modeling applying machine learning methods: a case study from Longju in the Three Gorges Reservoir area, China. Comput Geosci 112:23–37. 10.1016/j.cageo.2017.11 DOI: 10.1016/j.cageo.2017.11