Agro-climatic indices; Climate change; Extreme high temperatures; Phenology; Reproductive growing duration; Agronomy and Crop Science; Plant Science
Abstract :
[en] Assessing crop yield in response to heat and drought stress is important in implementing the best adaptation strategies to mitigate the effects of climate change. For this aim, observations from 105 agricultural/meteorological experiments in the semi-arid (Maragheh, Qamlou and Sararoud), Mediterranean (Hashem Abad and Oltan) and semi-humid (Gharakhil) regions of Iran were used to investigate the response of the reproductive growing duration (RGD) and grain yield of rainfed winter wheat to certain climatic and agro-climatic indices consisted of precipitation (mm), growing degree days (GDDs), and cumulative extreme temperatures above wheat tolerance threshold level of ≥ 34 °C (TAT). Accordingly, multiple linear regression was applied under baseline (1998–2012) and future increasing temperature (by 1 °C and 2 °C). Results indicated that the average of wheat RGD and yield were 37.2 ± 0.71 d and 2.3 ± 0.05 t ha−1 in semi-arid, 25.7 ± 0.8 d and 2.9 ± 0.11 t ha−1 in semi-humid, and 21.7 ± 0.59 d and 5.25 ± 0.17 t ha−1 in Mediterranean regions, respectively. The main findings showed that, on average during 1998–2012, wheat RGD and yield changed by − 0.26 d yr−1 and − 0.93% (0.02 t ha−1 yr−1) in semi-arid, + 0.25 d yr−1 and − 1.27% (0.04 t ha−1 yr−1) in semi-humid, and − 0.01 d yr−1 and − 0.27% (0.01 t ha−1 yr−1) in Mediterranean regions, respectively. Precipitation and TAT had substantial positive and negative impacts on RGD by + 0.1 d yr−1 and − 0.03 d yr−1, and crop yield by + 0.04% and − 1.14% in all study locations. An increase in GDDs, however, significantly shortened RGD (− 0.06 d yr−1) and consequently reduced grain yield (− 0.04%) in semi-arid regions, while in semi-humid and Mediterranean regions, increasing GDDs had a positive impact on RGD (+ 0.07 d yr−1) and yield (+ 0.19%). Among the indices, TAT showed significantly greater detrimental effects on RGD and grain yield particularly when accompanied by less precipitation (i.e. drought stress). Our results highlighted that any increase in temperatures even by 1 °C or 2 °C would lead to drastic increases in TAT and GDDs in all study regions, most especially in semi-arid regions. Under these conditions, any benefits from precipitation would be neutralized by the negative impacts of increased GDDs and TAT in all study locations. The insights into crop response to weather variations and climate extremes provide excellent evidence and a basis for reducing crop yield damage by designing for improved heat tolerance for the future.
Disciplines :
Agriculture & agronomy
Author, co-author :
Kheiri, Mohammad; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Deihimfard, Reza; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Kambouzia, Jafar ; Department of Agroecology, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
Moghaddam, Saghi Movahhed; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
Rahimi-Moghaddam, Sajjad; Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
Azadi, Hossein ; Université de Liège - ULiège > TERRA Research Centre > Modélisation et développement ; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic ; Research Group Climate Change and Security, Institute of Geography, University of Hamburg, Hamburg, Germany
Language :
English
Title :
Impact of Heat Stress on Rainfed Wheat Growth and Yield Under Semi-arid, Semi-humid and Mediterranean Climates in Iran Condition
Publication date :
March 2022
Journal title :
International Journal of Plant Production
ISSN :
1735-6814
Publisher :
Springer Science and Business Media Deutschland GmbH
Ahmad, S., Abbas, G., Ahmed, M., Fatima, Z., Anjum, M. A., Rasul, G., Khan, M. A., & Hoogenboom, G. (2019). Climate warming and management impact on the change of rice-wheat phenology in Punjab, Pakistan. Field Crops Research, 230, 46–61. 10.1016/j.fcr.2018.10.008 DOI: 10.1016/j.fcr.2018.10.008
Ahmadi, A. D., & S.R., Parsa, M., Bannayan, M., Nassiri Mahallati, M., & Deihimfard, R. (2014). Yield gap analysis of chickpea under semi-arid conditions: A simulation study. International Journal of Plant Production., 8, 531–548.
Anwar, M. R., O’Leary, G., McNeil, D., Hossain, H., & Nelson, R. (2007). Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research, 104, 139–147. 10.1016/j.fcr.2007.03.020 DOI: 10.1016/j.fcr.2007.03.020
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rötter, R. P., Cammarano, D., & Brisson, N. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. 10.1038/nclimate1916 DOI: 10.1038/nclimate1916
Bannayan, M., & Sanjani, S. (2011). Weather conditions associated with irrigated crops in an arid and semi arid environment. Agricultural and Forest Meteorology, 151(12), 1589–1598. 10.1016/j.agrformet.2011.06.015 DOI: 10.1016/j.agrformet.2011.06.015
Bergkamp, B., Impa, S. M., Asebedo, A. R., Fritz, A. K., & Jagadish, S. K. (2018). Prominent winter wheat varieties response to post-flowering heat stress under controlled chambers and field based heat tents. Field Crops Research, 222, 143–152. 10.1016/j.fcr.2018.03.009 DOI: 10.1016/j.fcr.2018.03.009
Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. DOI: 10.3389/fpls.2013.00273
Chen, Y., Zhang, Z., Tao, F., Palosuo, T., & Rötter, R. P. (2018). Impacts of heat stress on leaf area index and growth duration of winter wheat in the North China Plain. Field Crops Research, 222, 230–237. 10.1016/j.fcr.2017.06.007 DOI: 10.1016/j.fcr.2017.06.007
Chen, Y., Zhang, Z., Wang, P., Song, X., Wei, X., & Tao, F. (2016). Identifying the impact of multi-hazards on crop yield—a case for heat stress and dry stress on winter wheat yield in northern China. European Journal of Agronomy, 73, 55–63. 10.1016/j.eja.2015.10.009 DOI: 10.1016/j.eja.2015.10.009
Deihimfard, R., Rahimi-Moghaddam, S., & Chenu, K. (2019). Risk assessment of frost damage to sugar beet simulated under cold and semi-arid environments. International Journal of Biometerology, 63, 511–521. 10.1007/s00484-019-01682-5 DOI: 10.1007/s00484-019-01682-5
Dubey, R., Pathak, H., Chakrabarti, B., Singh, S., Gupta, D. K., & Harit, R. C. (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems, 181, 102826. 10.1016/j.agsy.2020.102826 DOI: 10.1016/j.agsy.2020.102826
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507. 10.1080/07352689.2011.615687 DOI: 10.1080/07352689.2011.615687
Farooq, M., Hussain, M., & Siddique, K. H. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33(4), 331–349. 10.1080/07352689.2014.875291 DOI: 10.1080/07352689.2014.875291
Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., Ahmad, S., Ahmed, N., Ali, M. A., Sarwar, G., & ul Haque, E., Iqbal, P., & Hussain, S. (2020). The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports, 10, 18013. 10.1038/s41598-020-74740-3 DOI: 10.1038/s41598-020-74740-3
Hou, P., Liu, Y., Xie, R., Ming, B., Ma, D., Li, S., & Mei, X. (2014). Temporal and spatial variation in accumulated temperature requirements of maize. Field Crops Research, 158, 55–64. 10.1016/j.fcr.2013.12.021 DOI: 10.1016/j.fcr.2013.12.021
Hunt, J. R., Hayman, P. T., Richards, R. A., & Passioura, J. B. (2018). Opportunities to reduce heat damage in rain-fed wheat crops based on plant breeding and agronomic management. Field Crops Research, 224, 126–138. 10.1016/j.fcr.2018.05.012 DOI: 10.1016/j.fcr.2018.05.012
Iannucci, A., Terribile, M., & Martiniello, P. (2008). Effects of temperature and photoperiod on flowering time of forage legumes in a Mediterranean environment. Field Crops Research, 106, 156–162. 10.1016/j.fcr.2007.11.005 DOI: 10.1016/j.fcr.2007.11.005
Innes, P., Tan, D., Van Ogtrop, F., & Amthor, J. (2015). Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agricultural and Forest Meteorology, 208, 95–107. 10.1016/j.agrformet.2015.03.018 DOI: 10.1016/j.agrformet.2015.03.018
Kheiri, M., Kambouzia, J., Deihimfard, R., Yaghoubian, I., & Movahhed Moghaddam, S. (2021). Response of rainfed chickpea yield to spatio-temporal variability in climate in the Northwest of Iran. International Journal of Plant Production. 10.1007/s42106-021-00153-5 DOI: 10.1007/s42106-021-00153-5
Kheiri, M., Soufizadeh, S., Ghaffari, A., AghaAlikhani, M., & Eskandari, A. (2017). Association between temperature and precipitation with dryland wheat yield in northwest of Iran. Climatic Change, 141, 703–717. 10.1007/s10584-017-1904-5 DOI: 10.1007/s10584-017-1904-5
Kheiri, M., Soufizadeh, S., Moghaddam, S. M., & Ghaffari, A. (2021). Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars. Agricultural Research. 10.1007/s40003-020-00523-x DOI: 10.1007/s40003-020-00523-x
Liu, Y., Xie, R., Hou, P., Li, S., Zhang, H., Ming, B., Long, H., & Liang, S. (2013). Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Research, 144, 192–199. 10.1016/j.fcr.2013.01.003 DOI: 10.1016/j.fcr.2013.01.003
Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150, 1443–1452. 10.1016/j.agrformet.2010.07.008 DOI: 10.1016/j.agrformet.2010.07.008
Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. 10.1126/science.1204531 DOI: 10.1126/science.1204531
Lobell, D. B., Sibley, A., & Ortiz-Monasterio, J. I. (2012). Extreme heat effects on wheat senescence in India. Nature Climate Change, 2(3), 186–189. 10.1038/nclimate1356 DOI: 10.1038/nclimate1356
Mahrookashani, A., Siebert, S., Hüging, H., & Ewert, F. (2017). Independent and combined effects of high temperature and drought stress around anthesis on wheat. Journal of Agronomy and Crop Science, 203(6), 453–463. 10.1111/jac.12218 DOI: 10.1111/jac.12218
Major, D., Brown, D., Bootsma, A., Dupuis, G., Fairey, N., Grant, E., Green, D., Hamilton, R., Langille, J., & Sonmor, L. (1983). An evaluation of the corn heat unit system for the short-season growing regions across Canada. Canadian Journal of Plant Science, 63, 121–130. 10.4141/cjps83-012 DOI: 10.4141/cjps83-012
Mesgaran, M. B., Madani, K., Hashemi, H., & Azadi, P. (2017). Iran’s land suitability for agriculture. Scientific Reports, 7(1), 1–12. 10.1038/s41598-017-08066-y DOI: 10.1038/s41598-017-08066-y
Neira Mendez, F.H. (2005). Assessment of climate indices in drylands of Colombia. Universiteit Gent Belgium.
Nio, S., Cawthray, G., Wade, L., & Colmer, T. (2011). Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage. Plant Physiology and Biochemistry, 49, 1126–1137. 10.1016/j.plaphy.2011.05.011 DOI: 10.1016/j.plaphy.2011.05.011
Parry, M. L., Rosenzweig, C., Iglesias, A., Livermore, M., & Fischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14(1), 53–67. 10.1016/j.gloenvcha.2003.10.008 DOI: 10.1016/j.gloenvcha.2003.10.008
Prasad, P. V. V., Boote, K. J., & Allen, L. H., Jr. (2006). Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251. 10.1016/j.agrformet.2006.07.003 DOI: 10.1016/j.agrformet.2006.07.003
Prescott, J. A. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 46, 114–118.
Rezaei, E. E., & Bannayan, M. (2012). Rainfed wheat yields under climate change in northeastern Iran. Meteorological Applications, 19, 346–354. 10.1002/met.268 DOI: 10.1002/met.268
Rezaei, E. E., Siebert, S., Manderscheid, R., Müller, J., Mahrookashani, A., Ehrenpfordt, B., Haensch, J., Weigel, H.-J., & Ewert, F. (2018). Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Research, 217, 93–103. 10.1016/j.fcr.2017.12.015 DOI: 10.1016/j.fcr.2017.12.015
Rezaei, E. E., Webber, H., Gaiser, T., Naab, J., & Ewert, F. (2015). Heat stress in cereals: Mechanisms and modelling. European Journal of Agronomy, 64, 98–113. 10.1016/j.eja.2014.10.003 DOI: 10.1016/j.eja.2014.10.003
Sharma, R. C., Tiwary, A. K., & Ortiz-Ferrara, G. (2008). Reduction in kernel weight as a potential indirect selection criterion for wheat grain yield under terminal heat stress. Plant Breeding, 127(3), 241–248. 10.1111/j.1439-0523.2007.01460.x DOI: 10.1111/j.1439-0523.2007.01460.x
Shi, W., Tao, F., & Liu, J. (2014). Regional temperature change over the Huang-Huai-Hai Plain of China: The roles of irrigation versus urbanization. International Journal of Climatology, 34, 1181–1195. 10.1002/joc.3755 DOI: 10.1002/joc.3755
Siebert, S., Ewert, F., Rezaei, E. E., Kage, H., & Graß, R. (2014). Impact of heat stress on crop yield—on the importance of considering canopy temperature. Environmental Research Letters, 9, 044012. 10.1088/1748-9326/9/4/044012 DOI: 10.1088/1748-9326/9/4/044012
Tahmasebi, M., Feike, T., Soltani, A., Ramroudi, M., & Ha, N. (2018). Trade-off between productivity and environmental sustainability in irrigated vs. rainfed wheat production in Iran. Journal of Cleaner Production, 174, 367–379. 10.1016/j.jclepro.2017.10.305 DOI: 10.1016/j.jclepro.2017.10.305
Talukder, A., McDonald, G. K., & Gill, G. S. (2014). Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crops Research, 160, 54–63. 10.1016/j.fcr.2014.01.013 DOI: 10.1016/j.fcr.2014.01.013
Tao, F., Xiao, D., Zhang, S., Zhang, Z., & Rötter, R. P. (2017). Wheat yield benefited from increases in minimum temperature in the Huang-Huai-Hai Plain of China in the past three decades. Agricultural and Forest Meteorology, 239, 1–14. 10.1016/j.agrformet.2017.02.033 DOI: 10.1016/j.agrformet.2017.02.033
Tao, F., Zhang, Z., Zhang, S., & Rötter, R. P. (2015). Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades. European Journal of Agronomy, 71, 44–52. 10.1016/j.eja.2015.08.003 DOI: 10.1016/j.eja.2015.08.003
Wang, Y., Meng, Z., Lyu, R., Huang, G., He, Q., & Cheng, T. (2020). Spatiotemporal changes of surface solar radiation: Implication for air pollution and rice yield in East China. Science of the Total Environment, 739, 140361. 10.1016/j.scitotenv.2020.140361 DOI: 10.1016/j.scitotenv.2020.140361
Yan, S., Wu, Y., Fan, J., Zhang, F., Qiang, S., Zheng, J., Xiang, Y., Guo, J., & Zou, H. (2019). Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agricultural Water Management, 213, 983–995. 10.1016/j.agwat.2018.12.019 DOI: 10.1016/j.agwat.2018.12.019
Yang, H., Dobermann, A., Lindquist, J. L., Walters, D. T., Arkebauer, T. J., & Cassman, K. G. (2004). Hybrid-maize—a maize simulation model that combines two crop modeling approaches. Field Crops Research, 87, 131–154. 10.1016/j.fcr.2003.10.003 DOI: 10.1016/j.fcr.2003.10.003
Yang, X., Li, J., Yu, Q., Ma, Y., Tong, X., Feng, Y., & Tong, Y. (2019). Impacts of diffuse radiation fraction on light use efficiency and gross primary production of winter wheat in the North China Plain. Agricultural and Forest Meteorology, 275, 233–242. 10.1016/j.agrformet.2019.05.028 DOI: 10.1016/j.agrformet.2019.05.028
Zarei, A. R., Shabani, A., & Mahmoudi, M. R. (2019). Comparison of the climate indices based on the relationship between yield loss of rain-fed winter wheat and changes of climate indices using GEE model. Science of the Total Environment, 661, 711–722. 10.1016/j.scitotenv.2019.01.204 DOI: 10.1016/j.scitotenv.2019.01.204